Publications by authors named "Stephen S Newton"

 A majority of otolaryngologists have not had direct experience with many vaccine-preventable diseases since the creation of national vaccination programs. Despite the elimination of endemic transmission of some of these diseases in the United States, outbreaks can occur anywhere and still pose a threat to public health around the world. Recent outbreaks and changing trends in exemption rates indicate that it is important for physicians to maintain a working knowledge of how these diseases present and of the recommended treatment guidelines.

View Article and Find Full Text PDF

Gene-based therapeutics are being developed as novel treatments for genetic hearing loss. One roadblock to effective gene therapy is the identification of vectors which will safely deliver therapeutics to targeted cells. The cellular heterogeneity that exists within the cochlea makes viral tropism a vital consideration for effective inner ear gene therapy.

View Article and Find Full Text PDF

Mutations in miRNA genes have been implicated in hearing loss in human families and mice. It is also possible that mutations in miRNA binding sites of inner ear targets alter gene expression levels and lead to hearing loss. To investigate these possibilities we screened predicted target genes of the miR-183 miRNA cluster known to be expressed in the inner ear sensory epithelium.

View Article and Find Full Text PDF

Development of effective therapeutics for hearing loss has proven to be a slow and difficult process, evidenced by the lack of restorative medicines and technologies currently available to the otolaryngologist. In large part this is attributable to the limited regenerative potential in cochlear cells and the secondary degeneration of the cochlear architecture that commonly follows sensorineural hearing impairment. Therapeutic advances have been made using animal models, particularly in regeneration and remodeling of spiral ganglion neurons, which retract and die following hair cell loss.

View Article and Find Full Text PDF

Development of effective therapeutics for hearing loss has proven to be a slow and difficult process, evidenced by the lack of restorative medicines and technologies currently available to the otolaryngologist. In large part this is attributable to the limited regenerative potential in cochlear cells and the secondary degeneration of the cochlear architecture that commonly follows sensorineural hearing impairment. Therapeutic advances have been made using animal models, particularly in regeneration and remodeling of spiral ganglion neurons, which retract and die following hair cell loss.

View Article and Find Full Text PDF

The locations, projections, and functions of the intracardiac ganglia are incompletely understood. Immunocytochemical labeling with the general neuronal marker protein gene product 9.5 (PGP 9.

View Article and Find Full Text PDF