Background: Immunomodulation is observed in human parturition. However, data from longitudinal studies for the prelabor phase and the active phase of labor are lacking, and no study had compared the immune responses during labor between nulliparous and multiparous women.
Objective: This study aimed to investigate the temporal changes of immune biomarkers in maternal blood from the prelabor phase to the latent and active phases of labor and to compare the dynamic changes between nulliparous and multiparous women.
Genome-wide transcriptomic studies on gestational tissues in labor provide molecular insights in mechanism of normal parturition. This systematic review aimed to summarize the important genes in various gestational tissues around labor onset, and to dissect the underlying molecular regulations and pathways that trigger the labor in term pregnancies. PubMed and Web of Science were searched from inception to January 2021.
View Article and Find Full Text PDFTo compare the whole genomic microRNA (miRNA) between the selective fetal growth restriction (sFGR) twin and the normally growing (control) co-twin in monochorionic (MC) twin pregnancies. MC twin pregnancies with or without sFGR were recruited, and their placental miRNAs were profiled by microarray. The ratio of the placental miRNA of the sFGR twin to that of the normally larger co-twin were calculated and compared to that of the control twin pairs.
View Article and Find Full Text PDFIntroduction: Placental-related mechanism of fetal growth restriction (FGR) is still unknown. Here we aimed to profile whole-genome miRNA between selective FGR twin (sFGR-T) and normally larger co-twin (sL-T) in monochorionic (MC) twin pregnancies and to further investigate effect of the miRNA on placental pathogenesis, including angiogenesis and mitochondrial functions.
Methods: MC twin pregnancies with or without sFGR were recruited, and their placental miRNAs were profiled (n = 3 vs 5).
RNA transcripts circulating in peripheral blood represent an important source of non-invasive biomarkers. To accurately quantify the levels of circulating transcripts, one needs to normalize the data with internal control reference genes, which are detected at relatively constant levels across blood samples. A few reference gene candidates have to be selected from transcriptome data before the validation of their stable expression by reverse-transcription quantitative polymerase chain reaction.
View Article and Find Full Text PDFPreviously, we reported that proteomic fingerprints were present in sera of patients with severe acute respiratory syndrome (SARS), and could separate patients into subgroups with different prognoses. In the present study, we examined the prognostic values of the SARS-associated proteomic features by biostatistical analysis, and deciphered the identities of those with prognostic values. Data of 20 SARS-associated serum proteomic features and ten serological variables from 38 SARS adult patients before treatment were subjected to multivariate logistic regression.
View Article and Find Full Text PDFBackground: Spontaneous preterm birth (SPB, before 37 gestational weeks) is a major cause of perinatal mortality and morbidity, but its pathogenesis remains unclear. Studies on SPB have been hampered by the limited availability of markers for SPB in predelivery clinical samples that can be easily compared with gestational age-matched normal controls. We hypothesize that SPB involves aberrant placental RNA expression, and that such RNA transcripts can be detected in predelivery maternal plasma samples, which can be compared with gestational age-matched controls.
View Article and Find Full Text PDFBackground: The CHD5 gene located on 1p36 encodes a protein-chromodomain helicase DNA-binding protein 5. CHD5 has been shown to be a tumor suppressor gene candidate. This study investigated the involvement of CHD5 in ovarian cancer and its clinicopathological significance.
View Article and Find Full Text PDFBackground: Noninvasive prenatal diagnosis of fetal aneuploidy by maternal plasma analysis is challenging owing to the low fractional and absolute concentrations of fetal DNA in maternal plasma. Previously, we demonstrated for the first time that fetal DNA in maternal plasma could be specifically targeted by epigenetic (DNA methylation) signatures in the placenta. By comparing one such methylated fetal epigenetic marker located on chromosome 21 with another fetal genetic marker located on a reference chromosome in maternal plasma, we could infer the relative dosage of fetal chromosome 21 and noninvasively detect fetal trisomy 21.
View Article and Find Full Text PDFWe investigated the role(s) of monoamine oxidases (MAOs) on the altered 5-hydroxytryptamine (5-HT, serotonin)-induced tension development of the isolated umbilical artery of preeclamptic pregnancy of Chinese women. An enhanced 5-HT-induced tension development of the umbilical artery of preeclamptic pregnancy was observed when compared with that of normal pregnancy. The enhanced component of 5-HT-induced tension development was eradicated by clorgyline (a MAO-A inhibitor).
View Article and Find Full Text PDFBackground: The term "transrenal DNA" was coined in 2000 to signify that DNA in urine may come from the passage of plasma DNA through the kidney barrier. Although DNA in the urine has the potential to provide a completely noninvasive source of nucleic acids for molecular diagnosis, its existence remains controversial.
Methods: We obtained blood and urine samples from 22 hematopoietic stem cell transplant (HSCT) recipients and used fluorescence in situ hybridization, PCR for short tandem repeats, mass spectrometry, quantitative PCR, and immunofluorescence detection to study donor-derived DNA in the urine.
The epidemic of the severe acute respiratory syndrome (SARS) has swept through the globe with more than 8000 reported probable cases. In Hong Kong, the hardest hit areas included our teaching hospital and the Amoy Gardens apartment complex. A novel coronavirus, SARS-coronavirus (SARS-CoV), with a single-stranded plus sense RNA genome, was promptly implicated as the causative agent and subsequently fulfilled Koch's postulates.
View Article and Find Full Text PDFBackground: The discovery of circulating fetal nucleic acids in maternal plasma has opened up new possibilities for noninvasive prenatal diagnosis. MicroRNAs (miRNAs), a class of small RNAs, have been intensely investigated recently because of their important regulatory role in gene expression. Because nucleic acids of placental origin are released into maternal plasma, we hypothesized that miRNAs produced by the placenta would also be released into maternal plasma.
View Article and Find Full Text PDFBackground: The presence of fetal DNA in maternal plasma represents a source of fetal genetic material for noninvasive prenatal diagnosis; however, the coexisting background maternal DNA complicates the analysis of aneuploidy in such fetal DNA. Recently, the SERPINB5 gene on chromosome 18 was shown to exhibit different DNA-methylation patterns in the placenta and maternal blood cells, and the allelic ratio for placenta-derived hypomethylated SERPINB5 in maternal plasma was further shown to be useful for noninvasive detection of fetal trisomy 18.
Methods: To develop a similar method for the noninvasive detection of trisomy 21, we used methylation-sensitive single nucleotide primer extension and/or bisulfite sequencing to systematically search 114 CpG islands (CGIs)-76% of the 149 CGIs on chromosome 21 identified by bioinformatic criteria-for differentially methylated DNA patterns.
Objective: To study if quantitative aberrations in circulating placental-derived hypermethylated RASSF1A DNA in maternal plasma are associated with pre-eclamptic pregnancies.
Method: Maternal plasma and placental tissues from third-trimester pre-eclamptic women and gestational-age matched normotensive controls were studied. Real-time PCR was performed to quantify RASSF1A concentrations before and after methylation-sensitive restriction digestion in a duplex assay, where ss-actin concentrations were quantified as an internal control to confirm complete enzyme digestion.
The pseudomalignant nature of the placenta prompted us to search for tumor suppressor gene hypermethylation, a phenomenon widely reported in cancer, in the human placenta. Nine tumor suppressor genes were studied. Hypermethylation of the Ras association domain family 1 A (RASSF1A) gene was found in human placentas from all three trimesters of pregnancy but was absent in other fetal tissues.
View Article and Find Full Text PDFBackground: We recently demonstrated that the promoter of the RASSF1A gene is hypermethylated in the placenta and hypomethylated in maternal blood cells. This methylation pattern allows the use of methylation-sensitive restriction enzyme digestion for detecting the placental-derived hypermethylated RASSF1A sequences in maternal plasma.
Methods: We performed real-time PCR after methylation-sensitive restriction enzyme digestion to detect placental-derived RASSF1A sequences in the plasma of 28 1st-trimester and 43 3rd-trimester pregnant women.
Background: The discovery of cell-free fetal DNA in maternal plasma has opened up new possibilities for noninvasive prenatal diagnosis. However, the use of maternal plasma fetal DNA for the direct detection of fetal chromosomal aneuploidies has not been reported. We postulate that the aneuploidy status of a fetus could be revealed by an epigenetic allelic ratio approach, i.
View Article and Find Full Text PDFMethods Mol Biol
September 2006
The polymerase chain reaction (PCR), which can exponentially replicate a target DNA sequence, has formed the basis for the sensitive and direct examination of clinical samples for evidence of infection. During the epidemic of severe acute respiratory syndrome (SARS) in 2003, PCR not only offered a rapid way to diagnose SARS-coronavirus (SARS-CoV) infection, but also made the molecular analysis of its genomic sequence possible. Sequence variations were observed in the SAR-CoV obtained from different patients in this epidemic.
View Article and Find Full Text PDFDuring cardiac muscle development, most cardiomyocytes permanently withdraw from the cell cycle. Previously, by suppressive subtractive hybridization, we identified calcyclin-binding protein/Siah-interacting protein (CacyBP/SIP) as one of the candidates being upregulated in the hyperplastic to hypertrophic switch, suggesting an important role of CacyBP/SIP in cardiac development. To show the importance of CacyBP/SIP during myoblast differentiation, we report here that CacyBP/SIP is developmentally regulated in postnatal rat hearts.
View Article and Find Full Text PDFBackground: Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a new coronavirus strain, SARS-CoV. Specific proteomic patterns might be present in serum in response to the infection and could be useful for early detection of the disease.
Methods: Using surface-enhanced laser desorption/ionization (SELDI) ProteinChip technology, we profiled and compared serum proteins of 39 patients with early-stage SARS infection and 39 non-SARS patients who were suspected cases during the SARS outbreak period.
Background: The Severe Acute Respiratory Syndrome (SARS) was a newly emerged infectious disease which caused a global epidemic in 2002-2003. Sequence analysis of SARS-coronavirus isolates revealed that specific genotypes predominated at different periods of the epidemic. This information can be used as a footprint for tracing the epidemiology of infections and monitor viral evolution.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2005
The discovery of fetal DNA in the plasma of pregnant women has opened up new approaches for noninvasive prenatal diagnosis and monitoring. Up to now, the lack of a fetal DNA marker that can be universally detected in maternal plasma has limited the clinical application of this technology. We hypothesized that epigenetic differences between the placenta and maternal blood cells could be used for developing such a marker.
View Article and Find Full Text PDFBackground: It has been postulated that genetic predisposition may influence the susceptibility to SARS-coronavirus infection and disease outcomes. A recent study has suggested that the deletion allele (D allele) of the angiotensin converting enzyme (ACE) gene is associated with hypoxemia in SARS patients. Moreover, the ACE D allele has been shown to be more prevalent in patients suffering from adult respiratory distress syndrome (ARDS) in a previous study.
View Article and Find Full Text PDF