Publications by authors named "Stephen Robbins"

Objective: Dipeptidase-1 (DPEP-1) is a recently discovered leucocyte adhesion receptor for neutrophils and monocytes in the lungs and kidneys and serves as a potential therapeutic target to attenuate inflammation in moderate-to-severe COVID-19. We aimed to evaluate the safety and efficacy of the DPEP-1 inhibitor, LSALT peptide, to prevent specific organ dysfunction in patients hospitalised with COVID-19.

Design: Phase 2a randomised, placebo-controlled, double-blinded, trial.

View Article and Find Full Text PDF

Study Design: Prospective randomized Food and Drug Administration investigational device exemption clinical trial.

Objective: The purpose of the present study is to report the 1-year clinical and radiographic outcomes and safety profile of patients who underwent lumbar facet arthroplasty through implantation of the Total Posterior Spine System (TOPS) device.

Summary Of Background Data: Lumbar facet arthroplasty is one proposed method of dynamic stabilization to treat grade-1 spondylolisthesis with stenosis; however, there are currently no Food and Drug Administration-approved devices for facet arthroplasty.

View Article and Find Full Text PDF

Objective: The purpose of this study was to evaluate the safety and efficacy of a posterior facet replacement device, the Total Posterior Spine (TOPS) System, for the treatment of one-level symptomatic lumbar stenosis with grade I degenerative spondylolisthesis. Posterior lumbar arthroplasty with facet replacement is a motion-preserving alternative to lumbar decompression and fusion. The authors report the preliminary results from the TOPS FDA investigational device exemption (IDE) trial.

View Article and Find Full Text PDF

The mechanisms that drive leukocyte recruitment to the kidney are incompletely understood. Dipeptidase-1 (DPEP1) is a major neutrophil adhesion receptor highly expressed on proximal tubular cells and peritubular capillaries of the kidney. Renal ischemia reperfusion injury (IRI) induces robust neutrophil and monocyte recruitment and causes acute kidney injury (AKI).

View Article and Find Full Text PDF

Spheroids are three-dimensional cellular models with widespread basic and translational application across academia and industry. However, methodological transparency and guidelines for spheroid research have not yet been established. The MISpheroID Consortium developed a crowdsourcing knowledgebase that assembles the experimental parameters of 3,058 published spheroid-related experiments.

View Article and Find Full Text PDF

IL-33, a member of the IL-1 cytokine family has been shown to play a dual role within the body. First IL-33, similar to other IL-1 family members, is a secreted cytokine that binds to the cell surface receptor ST2 to induce a number of cell signaling pathways. Second, IL-33 enters the nucleus where it binds chromatin and directs transcriptional control of an array of growth factors and cytokines.

View Article and Find Full Text PDF

Despite a deeper molecular understanding, human glioblastoma remains one of the most treatment refractory and fatal cancers. It is known that the presence of macrophages and microglia impact glioblastoma tumorigenesis and prevent durable response. Herein we identify the dual function cytokine IL-33 as an orchestrator of the glioblastoma microenvironment that contributes to tumorigenesis.

View Article and Find Full Text PDF

Despite extensive molecular characterization, human glioblastoma remains a fatal disease with survival rates measured in months. Little improvement is seen with standard surgery, radiotherapy and chemotherapy. Clinical progress is hampered by the inability to detect and target glioblastoma disease reservoirs based on a diffuse invasive pattern and the presence of molecular and phenotypic heterogeneity.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most deadly brain tumor, and currently lacks effective treatment options. Brain tumor-initiating cells (BTICs) and orthotopic xenografts are widely used in investigating GBM biology and new therapies for this aggressive disease. However, the genomic characteristics and molecular resemblance of these models to GBM tumors remain undetermined.

View Article and Find Full Text PDF

A hallmark feature of inflammation is the orchestrated recruitment of neutrophils from the bloodstream into inflamed tissue. Although selectins and integrins mediate recruitment in many tissues, they have a minimal role in the lungs and liver. Exploiting an unbiased in vivo functional screen, we identified a lung and liver homing peptide that functionally abrogates neutrophil recruitment to these organs.

View Article and Find Full Text PDF

Capicua (Cic) is a transcriptional repressor mutated in the brain cancer oligodendroglioma. Despite its cancer link, little is known of Cic's function in the brain. We show that nuclear Cic expression is strongest in astrocytes and neurons but weaker in stem cells and oligodendroglial lineage cells.

View Article and Find Full Text PDF

Natural killer (NK) cells use the activating receptor NKp30 as a microbial pattern-recognition receptor to recognize, activate cytolytic pathways, and directly kill the fungi Cryptococcus neoformans and Candida albicans. However, the fungal pathogen-associated molecular pattern (PAMP) that triggers NKp30-mediated killing remains to be identified. Here we show that β-1,3-glucan, a component of the fungal cell wall, binds to NKp30.

View Article and Find Full Text PDF

Personalized (or precision) medicine approaches are currently being introduced in healthcare delivery following the development of new technologies and of novel ways to integrate and analyze various data sources. This editorial describes the efforts invested since 2012 by the Canadian Institutes of Health Research (CIHR) to foster the development and implementation of personalized medicine in Canada. Success stories from past investments as well as future developments are presented from a Canadian perspective.

View Article and Find Full Text PDF

The fidelity of synaptic transmission depends on the integrity of the protein machinery at the synapse. Unfolded synaptic proteins undergo refolding or degradation in order to maintain synaptic proteostasis and preserve synaptic function, and buildup of unfolded/toxic proteins leads to neuronal dysfunction. Many molecular chaperones contribute to proteostasis, but one in particular, cysteine string protein (CSPα), is critical for proteostasis at the synapse.

View Article and Find Full Text PDF

Oncogenic signaling by NOTCH is elevated in brain tumor-initiating cells (BTIC) in malignant glioma, but the mechanism of its activation is unknown. Here we provide evidence that tenascin-C (TNC), an extracellular matrix protein prominent in malignant glioma, increases NOTCH activity in BTIC to promote their growth. We demonstrate the proximal localization of TNC and BTIC in human glioblastoma specimens and in orthotopic murine xenografts of human BTIC implanted intracranially.

View Article and Find Full Text PDF

Study Design: A retrospective, multicenter, medical record review and independent analysis of computed tomographic scans was performed in 46 patients to determine radiographic arthrodesis rates after 1-segment, 2-segment, or 3-segment instrumented posterolateral fusions (PLF) using autograft, bone marrow aspirate (BMA), and a nanocrystalline hydroxyapatite bone void filler (nHA).

Objective: To determine the radiographic arthrodesis rates after instrumented lumbar PLF using local autograft, BMA, and nHA.

Summary Of Background Data: The use of iliac crest autograft in posterolateral spine fusion carries real and significant risks.

View Article and Find Full Text PDF

Small-molecule inhibitor of apoptosis (IAP) antagonists, called Smac mimetic compounds (SMCs), sensitize tumours to TNF-α-induced killing while simultaneously blocking TNF-α growth-promoting activities. SMCs also regulate several immunomodulatory properties within immune cells. We report that SMCs synergize with innate immune stimulants and immune checkpoint inhibitor biologics to produce durable cures in mouse models of glioblastoma in which single agent therapy is ineffective.

View Article and Find Full Text PDF

N-myc oncogene amplification is associated but not present in all cases of high-risk neuroblastoma (NB). Since oncogene expression could often modulate sensitivity to oncolytic viruses, we wanted to examine if N-myc expression status would determine virotherapy efficacy to high-risk NB. We showed that induction of exogenous N-myc in a non-N-myc-amplified cell line background (TET-21N) increased susceptibility to oncolytic vesicular stomatitis virus (mutant VSVΔM51) and alleviated the type I IFN-induced antiviral state.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most lethal and aggressive adult brain tumor, requiring the development of efficacious therapeutics. Towards this goal, we screened five genetically distinct patient-derived brain-tumor initiating cell lines (BTIC) with a unique collection of small molecule epigenetic modulators from the Structural Genomics Consortium (SGC). We identified multiple hits that inhibited the growth of BTICs in vitro, and further evaluated the therapeutic potential of EZH2 and HDAC inhibitors due to the high relevance of these targets for GBM.

View Article and Find Full Text PDF

Purpose: Glioblastoma is one of the most lethal cancers in humans, and with existing therapy, survival remains at 14.6 months. Current barriers to successful treatment include their infiltrative behavior, extensive tumor heterogeneity, and the presence of a stem-like population of cells, termed brain tumor-initiating cells (BTIC) that confer resistance to conventional therapies.

View Article and Find Full Text PDF

Background: Tenascin-C (TNC), an extracellular matrix protein overexpressed in malignant gliomas, stimulates invasion of conventional glioma cell lines (U251, U87). However, there is a dearth of such information on glioma stemlike cells. Here, we have addressed whether and how TNC may regulate the invasiveness of brain tumor-initiating cells (BTICs) that give rise to glioma progenies.

View Article and Find Full Text PDF

Purpose: The current standard of care for glioblastoma (GBM) involves a combination of surgery, radiotherapy, and temozolomide chemotherapy, but this regimen fails to achieve long-term tumor control. Resistance to temozolomide is largely mediated by expression of the DNA repair enzyme MGMT; however, emerging evidence suggests that inactivation of MSH6 and other mismatch repair proteins plays an important role in temozolomide resistance. Here, we investigate endogenous MSH6 mutations in GBM, anaplastic oligodendroglial tumor tissue, and corresponding brain tumor-initiating cell lines (BTIC).

View Article and Find Full Text PDF