Publications by authors named "Stephen R Yeandel"

The cylindrical pores of track-etched membranes offer excellent environments for studying the effects of confinement on crystallization as the pore diameter is readily varied and the anisotropic morphologies can direct crystal orientation. However, the inability to image individual crystals within the pores in this system has prevented many of the underlying mechanisms from being characterized. Here, we study the crystallization of calcium sulfate within track-etched membranes and reveal that oriented gypsum forms in 200 nm diameter pores, bassanite in 25-100 nm pores and anhydrite in 10 nm pores.

View Article and Find Full Text PDF

We present a general method for computing interfacial free energies from atomistic simulations, which is particularly suitable for solid/liquid interfaces. Our method uses an Einstein crystal as a universal reference state and is more flexible than previous approaches. Surfaces with dipoles, complex reconstructions, and miscible species are all easily accommodated within the framework.

View Article and Find Full Text PDF

Solid-state batteries are a proposed route to safely achieving high energy densities, yet this architecture faces challenges arising from interfacial issues between the electrode and solid electrolyte. Here we develop a novel family of double perovskites, LiLaMO (M = W, Te), where an uncommon lithium-ion distribution enables macroscopic ion diffusion and tailored design of the composition allows us to switch functionality to either a negative electrode or a solid electrolyte. Introduction of tungsten allows reversible lithium-ion intercalation below 1 V, enabling application as an anode (initial specific capacity >200 mAh g with remarkably low volume change of ∼0.

View Article and Find Full Text PDF

Thermal management at solid interfaces presents a technological challenge for modern thermoelectric power generation. Here, we define a computational protocol to identify nanoscale structural features that can facilitate thermal transport in technologically important nanostructured materials. We consider the highly promising thermoelectric material, SrTiO3, where tilt grain boundaries lower thermal conductivity.

View Article and Find Full Text PDF

To help understand the factors controlling the performance of one of the most promising n-type oxide thermoelectric SrTiO, we need to explore structural control at the atomic level. In SrLaTiO ceramics (0.0 ≤ x ≤ 0.

View Article and Find Full Text PDF