Publications by authors named "Stephen R Price"

Cryo-electron microscopy has greatly advanced our understanding of how the spliceosome cycles through different conformational states to conduct the chemical reactions that remove introns from pre-mRNA transcripts. The Cryo-EM structures were built upon decades of crystallographic studies of various spliceosomal RNA-protein complexes. In this review we give an overview of the crystal structures solved in the Nagai group, utilizing many of the strategies to design crystal packing as described in the accompanying paper.

View Article and Find Full Text PDF

Lanthanides are rare-earth metals with a broad range of applications in biological research and medicine. In addition to their unique magnetic and spectroscopic properties, lanthanides are also effective mimics of calcium and can stimulate or inhibit the function of calcium-binding proteins. Cadherins are a large family of calcium-binding proteins that facilitate cell adhesion and play key roles in embryo development, tissue homeostasis and tumour metastasis.

View Article and Find Full Text PDF

A core structural and functional motif of the vertebrate central nervous system is discrete clusters of neurons or 'nuclei'. Yet the developmental mechanisms underlying this fundamental mode of organisation are largely unknown. We have previously shown that the assembly of motor neurons into nuclei depends on cadherin-mediated adhesion.

View Article and Find Full Text PDF

Neuronal nuclei are prominent, evolutionarily conserved features of vertebrate central nervous system (CNS) organization. Nuclei are clusters of soma of functionally related neurons and are located in highly stereotyped positions. Establishment of this CNS topography is critical to neural circuit assembly.

View Article and Find Full Text PDF

Sound source localization is critical to animal survival and for identification of auditory objects. We investigated the acuity with which humans localize low frequency, pure tone sounds using timing differences between the ears. These small differences in time, known as interaural time differences or ITDs, are identified in a manner that allows localization acuity of around 1° at the midline.

View Article and Find Full Text PDF

Slice cultures can facilitate the manipulation of embryo development both pharmacologically and through gene manipulations. In this reduced system, potential lethal side effects due to systemic drug applications can be overcome. However, culture conditions must ensure that normal development proceeds within the reduced environment of the slice.

View Article and Find Full Text PDF

Spinal motor neurons are critical to the ability of animals to move and thus essential to survival. Motor neurons that project axons to distinct limb-muscle targets are topographically organized such that central nervous system position reflects the location of the muscle in the limb. The central positioning of limb-projecting motor neurons arises during development through motor neuron migration followed by a period of coalescence into discrete groupings of motor neurons which project axons to an individual muscle.

View Article and Find Full Text PDF

Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together.

View Article and Find Full Text PDF

Introduction And Aims: While energy drinks (EDs) and alcohol have been reported to be frequently co-administered, little is known about the effect of this co-administration on alcohol drinking patterns. The purpose of the present research was to characterise patterns of ED and alcohol co-administration.

Design And Methods: Seventy-two ED users were recruited from the Halifax university community.

View Article and Find Full Text PDF

Crystal structures of classical cadherins have revealed two dimeric configurations. In the first, N-terminal beta-strands of EC1 domains 'swap' between partner molecules. The second configuration (the 'X dimer'), also observed for T-cadherin, is mediated by residues near the EC1-EC2 calcium binding sites, and N-terminal beta-strands of partner EC1 domains, though held adjacent, do not swap.

View Article and Find Full Text PDF

Cadherin-7 (Cad7) and cadherin-6B (Cad6B) are expressed in early and late phases of cranial motoneuron development, respectively. Cad7 is expressed by cranial motoneurons soon after they are generated, as well as in the environment through which their axons extend. By contrast, Cad6B is expressed by mature cranial motoneurons.

View Article and Find Full Text PDF

INTRODUCTIONThis protocol describes the electroporation of DNA constructs to drive in vivo gene expression in neurons during early chick development. Electroporation is a method of physically introducing DNA constructs into cells through the application of an electric field. This simple method is important as it allows the ectopic expression of transgenes with relative ease in most neurons.

View Article and Find Full Text PDF

Type I and II classical cadherins help to determine the adhesive specificities of animal cells. Crystal-structure determination of ectodomain regions from three type II cadherins reveals adhesive dimers formed by exchange of N-terminal beta strands between partner extracellular cadherin-1 (EC1) domains. These interfaces have two conserved tryptophan side chains that anchor each swapped strand, compared with one in type I cadherins, and include large hydrophobic regions unique to type II interfaces.

View Article and Find Full Text PDF

Cadherin-catenin complexes have been well established as key regulators of cell adhesion. Recent work has elucidated a pivotal role for these molecules in synaptic assembly, remodelling and plasticity. Far from being mere adhesive scaffolds, cadherins might directly regulate cell signalling to modulate synaptic connectivity.

View Article and Find Full Text PDF

Motor neurons are probably the best characterised neuronal class in the vertebrate central nervous system and have become a paradigm for understanding the mechanisms that control the development of vertebrate neurons. For many investigators working on this problem the chick embryo is the model system of choice and from these studies a picture of the steps involved in motor neuron generation has begun to emerge. These findings suggest that motor neuron generation is shaped by extracellular signals that regulate intrinsic, cell-autonomous determinants at sequential steps during development.

View Article and Find Full Text PDF

The projection of developing axons to their targets is a crucial step in the assembly of neuronal circuits. In the spinal cord, the differentiation of specific motor neuron pools is associated with the expression of ETS class transcription factors, notably PEA3 and ER81. Their initial expression coincides with the arrival of motor axons in the vicinity of muscle targets and depends on limb-derived signals.

View Article and Find Full Text PDF

During spinal cord development, motor neurons with common targets and afferent inputs cluster into discrete nuclei, termed motor pools. Motor pools can be delineated by transcription factor expression, but cell surface proteins that distinguish motor pools in a systematic manner have not been identified. We show that the developmentally regulated expression of type II cadherins defines specific motor pools.

View Article and Find Full Text PDF