Publications by authors named "Stephen R Farmer"

Increased de novo lipogenesis (DNL) in white adipose tissue is associated with insulin sensitivity. Under both Normal-Chow-Diet and High-Fat-Diet, mice expressing a kinase inactive Cyclin-dependent kinase 6 (Cdk6) allele (K43M) display an increase in DNL in visceral white adipose tissues (VAT) as compared to wild type mice (WT), accompanied by markedly increased lipogenic transcriptional factor Carbohydrate-responsive element-binding proteins (CHREBP) and lipogenic enzymes in VAT but not in the liver. Treatment of WT mice under HFD with a CDK6 inhibitor recapitulates the phenotypes observed in K43M mice.

View Article and Find Full Text PDF

In cancer associated cachexia (CAC), white adipose tissue undergoes morphofunctional and inflammatory changes that lead to tissue dysfunction and remodeling. In addition to metabolic changes in white adipose tissues (WAT), adipose tissue atrophy has been implicated in several clinical complications and poor prognoses associated with cachexia. Adipocyte atrophy may be associated with increased beige remodeling in human CAC as evidenced by the "beige remodeling" observed in preclinical models of CAC.

View Article and Find Full Text PDF

Overweight or obesity poses a significant risk of many obesity-related metabolic diseases. Among all the potential new therapies, stem cell-based treatments hold great promise for treating many obesity-related metabolic diseases. However, the mechanisms regulating adipocyte stem cells/progenitors (precursors) are unknown.

View Article and Find Full Text PDF

In adult white adipose tissue, cold or β3-adrenoceptor activation promotes the appearance of thermogenic beige adipocytes. Our comprehensive single-cell analysis revealed that these cells arise through the reprogramming of existing adipogenic trajectories, rather than from a single precursor. These trajectories predominantly arise from SM22-expressing vascular mural progenitor cells.

View Article and Find Full Text PDF

Objective: Obesity is a complex disorder and is linked to chronic diseases such as type 2 diabetes. Major intrinsically disordered NOTCH2-associated receptor2 (MINAR2) is an understudied protein with an unknown role in obesity and metabolism. The purpose of this study was to determine the impact of Minar2 on adipose tissues and obesity.

View Article and Find Full Text PDF
Article Synopsis
  • Obesity is linked to higher rates of breast cancer incidence, recurrence, and death, with specific cells in fat tissue (adipocytes and ASCs) contributing to early cancer progression.
  • Researchers created models of human breast tumors with fat tissue showing various changes due to obesity to study how cancer cells escape into circulation.
  • The study found that both lean and obese fat cells equally sped up the escape of breast cancer cells, indicating that the presence of these fat cells, regardless of obesity, enhances cancer cell mobility.
View Article and Find Full Text PDF

Adipose tissue fibrosis is regulated by the chronic and progressive metabolic imbalance caused by differences in caloric intake and energy expenditure. By exploring the cellular heterogeneity within fibrotic adipose tissue, we demonstrate that early adipocyte progenitor cells expressing both platelet-derived growth factor receptor (PDGFR) α and β are the major contributors to extracellular matrix deposition. We show that the fibrotic program is promoted by senescent macrophages.

View Article and Find Full Text PDF

Adipose tissue has been classified based on its morphology and function as white, brown, or beige/brite. It plays an essential role as a regulator of systemic metabolism through paracrine and endocrine signals. Recently, multiple adipocyte subtypes have been revealed using RNA sequencing technology, going beyond simply defined morphology but also by their cellular origin, adaptation to metabolic stress, and plasticity.

View Article and Find Full Text PDF

Obesity and metabolic diseases, such as insulin resistance and type 2 diabetes (T2D), are associated with metastatic breast cancer in postmenopausal women. Here, we investigated the critical cellular and molecular factors behind this link. We found that primary human adipocytes shed extracellular vesicles, specifically exosomes, that induced the expression of genes associated with epithelial-to-mesenchymal transition (EMT) and cancer stem–like cell (CSC) traits in cocultured breast cancer cell lines.

View Article and Find Full Text PDF

Adipose tissue is a complex organ consisting of a mixture of mature adipocytes and stromal vascular cells. It displays a remarkable ability to adapt to environmental and dietary cues by changing its morphology and metabolic capacity. This plasticity is demonstrated by the emergence of interspersed thermogenic beige adipocytes within white depots in response to catecholamines secretion.

View Article and Find Full Text PDF

Most strategies to treat obesity-related disorders have involved prevention of diet-induced weight gain in lean mice. Treatment of obese individuals will require therapies that reverse the detrimental effects of excess body weight. Cyclin-dependent kinases have been shown to contribute to obesity and its adverse complications.

View Article and Find Full Text PDF

The vascular adventitia contains numerous cell types including fibroblasts, adipocytes, inflammatory cells, and progenitors embedded within a complex extracellular matrix (ECM) network. In response to vascular injury, adventitial progenitors and fibroblasts become activated and exhibit increased proliferative capacity and differentiate into contractile cells that remodel the ECM. These processes can lead to vascular fibrosis and disease progression.

View Article and Find Full Text PDF

Cancer cachexia (CC) presents itself as a syndrome with multiple manifestations, causing a marked multi-organ metabolic imbalance. Recently, cachectic wasting has been proposed to be stimulated by several inflammatory mediators, which may disrupt the integrative physiology of adipose tissues and other tissues such as the brain and muscle. In this scenario, the tumor can survive at the host's expense.

View Article and Find Full Text PDF

White adipose tissue (WAT) is a dynamic tissue, which responds to environmental stimuli and dietary cues by changing its morphology and metabolic capacity. The ability of WAT to undergo a beige remodeling has become an appealing strategy to combat obesity and its comorbidities. Here, by using single-cell RNA sequencing, we provide a comprehensive atlas of the cellular dynamics during beige remodeling.

View Article and Find Full Text PDF

Visceral white adipose tissue (vWAT) expands and undergoes extensive remodeling during diet-induced obesity. Much is known about the contribution of various stromal vascular cells to the remodeling process, but less is known of the changes that occur within the adipocyte as it becomes progressively dysfunctional. Here, we performed a transcriptome analysis of isolated vWAT adipocytes to assess global pathway changes occurring in response to a chronic high fat diet (HFD).

View Article and Find Full Text PDF

Our study identifies a transcriptional role of cell death-inducing DNA fragmentation factor-like effector A (CIDEA), a lipid-droplet-associated protein, whereby it regulates human adipocyte britening/beiging with consequences for the regulation of energy expenditure. The comprehensive transcriptome analysis revealed CIDEA's control over thermogenic function in brite/beige human adipocytes. In the absence of CIDEA, achieved by the modified dual-RNA-based CRISPR-Cas9n system, adipocytes lost their britening capability, which was recovered upon CIDEA re-expression.

View Article and Find Full Text PDF

A recent study (Girousse et al. Cell Rep. 2019;27:323-333) shows that CXCR4 adipose progenitors (APCs) contribute to lipid spillover during high-fat feeding through their release from subcutaneous fat depots (ScATs) and migration to skeletal muscle where they differentiate into adipocytes.

View Article and Find Full Text PDF

Cancer-induced cachexia, characterized by systemic inflammation, body weight loss, adipose tissue (AT) remodeling and muscle wasting, is a malignant metabolic syndrome with undefined etiology. Here, we show that both genetic ablation and pharmacological inhibition of TLR4 were able to attenuate the main clinical markers of cachexia in mice bearing Lewis lung carcinoma (LLC). AT remodelling was not found in LLC tumor-bearing (TB) TLR4 mice due to reduced macrophage infiltration and adipocyte atrophy.

View Article and Find Full Text PDF

White adipose tissue expands through both adipocyte hypertrophy and hyperplasia and it is hypothesized that fibrosis or excess accumulation of extracellular matrix within adipose tissue may limit tissue expansion contributing to metabolic dysfunction. The pathways that control adipose tissue remodeling are only partially understood, however it is likely that adipose tissue stromal and perivascular progenitors participate in fibrotic remodeling and also serve as adipocyte progenitors. The goal of this study was to investigate the role of the secreted extracellular matrix protein aortic carboxypeptidase-like protein (ACLP) on adipose progenitor differentiation in the context of adipose tissue fibrosis.

View Article and Find Full Text PDF

Adipose tissue fibrosis is associated with inflammation and insulin resistance in human obesity. In particular, visceral fat fibrosis is correlated with hyperlipidemia and ectopic fat accumulation. Myocardin-related transcription factor A (MRTFA) is an important coactivator that mediates the transcription of extracellular matrix and other fibrogenic genes.

View Article and Find Full Text PDF

Whereas white adipose tissue depots contribute to the development of metabolic diseases, brown and beige adipose tissue has beneficial metabolic effects. Here we show that CDK6 regulates beige adipocyte formation. We demonstrate that mice lacking the CDK6 protein or its kinase domain (K43M) exhibit significant increases beige cell formation, enhanced energy expenditure, better glucose tolerance, and improved insulin sensitivity, and are more resistant to high-fat diet-induced obesity.

View Article and Find Full Text PDF

Brown-like adipocytes exist in several adipose depots including white (WAT) as well as brown (BAT). Activation of these UCP1 cells is a potential therapeutic strategy to combat obesity. Studies have shown that posttranslational modifications of PPARγ regulate select adipocyte programs.

View Article and Find Full Text PDF

Objective: Arising from common progenitors in the bone marrow, adipogenesis and osteogenesis are closely associated yet mutually exclusive during bone marrow mesenchymal stem cell (BMSC) development. Previous studies have shown that morphological changes can affect the early commitment of pluripotent BMSCs to the adipose versus osteoblastic lineage via modulation of RhoA activity. The RhoA pathway regulates actin polymerization to promote the incorporation of globular actin (G-actin) into filamentous actin (F-actin).

View Article and Find Full Text PDF

In this issue of Genes & Development, Zeng and colleagues (pp. 1822-1836) identify lysine-specific demethylase 1 (LSD1) as a pivotal regulator of whole-body energy expenditure by controlling the oxidative and thermogenic activity of brown adipose tissue (BAT). They show that LSD1 interacts with PRDM16 to repress select white adipose tissue (WAT) genes but also represses hydroxysteroid 11-β-dehydrogenase 1 (HSD11B1) independently of PRDM16 to prevent production of glucocorticoids that impair BAT functions.

View Article and Find Full Text PDF