The most general description of quantum evolution up to a time τ is a completely positive tracing preserving map known as a dynamical mapΛ̂(τ). Here, we consider Λ̂(τ) arising from suddenly coupling a system to one or more thermal baths with a strength that is neither weak nor strong. Given no clear separation of characteristic system/bath time scales, Λ̂(τ) is generically expected to be non-Markovian; however, we do assume the ensuing dynamics has a unique steady state, implying the baths possess a finite memory time τm.
View Article and Find Full Text PDFUnderstanding the entropy production of systems strongly coupled to thermal baths is a core problem of both quantum thermodynamics and mesoscopic physics. While many techniques exist to accurately study entropy production in such systems, they typically require a microscopic description of the baths, which can become numerically intractable to study for large systems. Alternatively an open-systems approach can be employed with all the nuances associated with various levels of approximation.
View Article and Find Full Text PDFNeural network quantum states (NQS) have been widely applied to spin-1/2 systems, where they have proven to be highly effective. The application to systems with larger on-site dimension, such as spin-1 or bosonic systems, has been explored less and predominantly using spin-1/2 Restricted Boltzmann Machines (RBMs) with a one-hot/unary encoding. Here, we propose a more direct generalization of RBMs for spin-1 that retains the key properties of the standard spin-1/2 RBM, specifically trivial product states representations, labeling freedom for the visible variables and gauge equivalence to the tensor network formulation.
View Article and Find Full Text PDFWe investigate how the presence of a single-particle mobility edge in a system can generate strong energy current rectification. Specifically, we study a quadratic bosonic chain subject to a quasiperiodic potential and coupled at its boundaries to spin baths of differing temperature. We find that rectification increases by orders of magnitude depending on the spatial position in the chain of localized eigenstates above the mobility edge.
View Article and Find Full Text PDFActivated platelets generate an eicosanoid proposed to be 8-hydroxy-9,10-dioxolane A3 (DXA). Herein, we demonstrate that significant amounts of DXA are rapidly attached to phosphatidylethanolamine (PE) forming four esterified eicosanoids, 16:0p, 18:0p, 18:1p and 18:0a/DXA-PEs that can activate neutrophil integrin expression. These lipids comprise the majority of DXA generated by platelets, are formed in ng amounts (24.
View Article and Find Full Text PDFBackground And Purpose: Airway microvascular leak (MVL) involves the extravasation of proteins from post-capillary venules into surrounding tissue. MVL is a cardinal sign of inflammation and an important feature of airway inflammatory diseases such as asthma. PGE2, a product of COX-mediated metabolism of arachidonic acid, binds to four receptors, termed EP1–4.
View Article and Find Full Text PDFObjective: To investigate the role of death receptor 3 (DR-3) and its ligand tumor necrosis factor-like molecule 1A (TL1A) in the early stages of inflammatory arthritis.
Methods: Antigen-induced arthritis (AIA) was generated in C57BL/6 mice deficient in the DR-3 gene (DR3(-/-) ) and their DR3(+/+) (wild-type) littermates by priming and intraarticular injection of methylated bovine serum albumin. The joints were sectioned and analyzed histochemically for damage to cartilage and expression of DR3, TL1A, Ly-6G (a marker for neutrophils), the gelatinase matrix metalloproteinase 9 (MMP-9), the aggrecanase ADAMTS-5, and the neutrophil chemoattractant CXCL1.
This protocol measures externalization of aminophospholipids (APLs) to the outside of the plasma membrane using mass spectrometry (MS). APL externalization occurs in numerous events, and it is relevant for transplant medicine, immunity and cancer. In this protocol, externalized APLs are chemically modified by using a cell-impermeable reagent (sulfo-NHS-biotin), and then they are isolated via a liquid:liquid extraction and quantified by reverse-phase liquid chromatography tandem MS (LC-MS/MS) against in-house-generated standards.
View Article and Find Full Text PDFOxidized phospholipids (oxPLs) generated nonenzymatically display pleiotropic biological actions in inflammation. Their generation by cellular cyclooxygenases (COXs) is currently unknown. To determine whether platelets generate prostaglandin (PG)-containing oxPLs, then characterize their structures and mechanisms of formation, we applied precursor scanning-tandem mass spectrometry to lipid extracts of agonist-activated human platelets.
View Article and Find Full Text PDFDeep insight can be gained into the nature of nonclassical correlations by studying the quantum operations that create them. Motivated by this we propose a measure of nonclassicality of a quantum operation utilizing the relative entropy to quantify its commutativity with the completely dephasing operation. We show that our measure of nonclassicality is a sum of two independent contributions, the generating power--its ability to produce nonclassical states out of classical ones, and the distinguishing power--its usefulness to a classical observer for distinguishing between classical and nonclassical states.
View Article and Find Full Text PDFBackground: Seasonal influenza A infection affects a significant cohort of the global population annually, resulting in considerable morbidity and mortality. Therapeutic strategies are of limited efficacy, and during a pandemic outbreak would only be available to a minority of the global population. Over-the-counter medicines are routinely taken by individuals suffering from influenza, but few studies have been conducted to determine their effectiveness in reducing pulmonary immunopathology or the influence they exert upon the generation of protective immunity.
View Article and Find Full Text PDF5-Lipoxygenase (5-LOX) plays key roles in infection and allergic responses. Herein, four 5-LOX-derived lipids comprising 5-hydroxyeicosatetraenoic acid (HETE) attached to phospholipids (PLs), either phosphatidylethanolamine (PE) or phosphatidylcholine (18:0p/5-HETE-PE, 18:1p/5-HETE-PE, 16:0p/5-HETE-PE, and 16:0a/5-HETE-PC), were identified in primary human neutrophils. They formed within 2 minutes in response to serum-opsonized Staphylococcus epidermidis or f-methionine-leucine-phenylalanine, with priming by lipopolysaccharide, granulocyte macrophage colony-stimulating factor, or cytochalasin D.
View Article and Find Full Text PDFIn this study, murine peritoneal macrophages from naïve lavage were found to generate four phospholipids that contain 12-hydroxyeicosatetraenoic acid (12-HETE). They comprise three plasmalogen and one diacyl phosphatidylethanolamines (PEs) (16:0p, 18:1p, 18:0p, and 18:0a at sn-1) and are absent in macrophages from 12/15-lipoxygenase (12/15-LOX)-deficient mice. They are generated acutely in response to calcium mobilization, are primarily cell-associated, and are detected on the outside of the plasma membrane.
View Article and Find Full Text PDFIn some cases the state of a quantum system with a large number of subsystems can be approximated efficiently by the density-matrix renormalization group, which makes use of redundancies in the description of the state. Here we show that the achievable efficiency can be much better when performing density-matrix renormalization group calculations in the Heisenberg picture, as only the observable of interest but not the entire state is considered. In some nontrivial cases, this approach can even be exact for finite bond dimensions.
View Article and Find Full Text PDFIt has been known for many years that neutrophils and platelets participate in the pathogenesis of severe sepsis, but the inter-relationship between these players is completely unknown. We report several cellular events that led to enhanced trapping of bacteria in blood vessels: platelet TLR4 detected TLR4 ligands in blood and induced platelet binding to adherent neutrophils. This led to robust neutrophil activation and formation of neutrophil extracellular traps (NETs).
View Article and Find Full Text PDFTo study the mechanisms involved in leukocyte recruitment induced by local bacterial infection within the CNS, we used intravital microscopy to visualize the interaction between leukocytes and the microvasculature in the brain. First, we showed that intracerebroventricular injection of LPS could cause significant rolling and adhesion of leukocytes in the brain postcapillary venules of wild-type mice, while negligible recruitment was observed in TLR4-deficient C57BL/10ScCr mice and CD14 knockout mice, suggesting recruitment is mediated by TLR4/CD14-bearing cells. Moreover, we observed reduced but not complete inhibition of recruitment in MyD88 knockout mice, indicating both MyD88-dependent and -independent pathways are involved.
View Article and Find Full Text PDFLocalization of circulating lymphocytes to a site of inflammation is paramount for the development and maintenance of an immune response. In vitro studies using cell lines have previously demonstrated that rolling and adhesion of lymphocytes on endothelium requires CD44 interactions with hyaluronan (HA). To date, whether CD44 has a role in mediating CD4(+)-polarized T-helper 1 (Th1) and Th2 lymphocyte interactions with the endothelium in vivo is yet to be determined.
View Article and Find Full Text PDFPGHS-2 (prostaglandin H synthase-2) is induced in mammalian cells by pro-inflammatory cytokines in tandem with iNOS [high-output ('inducible') nitric oxide synthase], and is co-localized with iNOS and nitrotyrosine in human atheroma macrophages. Herein, murine J774.2 macrophages incubated with lipopolysaccharide and interferon gamma showed induction of PGHS-2 and generated NO using iNOS that could be completely depleted by 12(S)-HPETE [12(S)-hydroperoxyeicosatetraenoic acid; 2.
View Article and Find Full Text PDFThe detailed mechanisms by which acutely activated leukocytes metabolize NO and regulate its bioactivity are unknown. Therefore, healthy, chronic granulomatous disease (CGD) or myeloperoxidase (MPO)-deficient human neutrophils were examined for their ability to consume NO and attenuate its signaling. fMLP or PMA activation of healthy neutrophils caused NO consumption that was fully blocked by NADPH oxidase inhibition, and was absent in CGD neutrophils.
View Article and Find Full Text PDFNitration of unsaturated fatty acids such as linoleate by NO-derived reactive species forms novel derivatives (including nitrolinoleate [LNO2]) that can stimulate smooth muscle relaxation and block platelet activation by either NO/cGMP or cAMP-dependent mechanisms. Here, LNO2 was observed to inhibit human neutrophil function. LNO2, but not linoleic acid or the nitrated amino acid 3-nitrotyrosine, dose-dependently (0.
View Article and Find Full Text PDF