Thermoelectric modules are a promising approach to energy harvesting and efficient cooling. In addition to the longitudinal Seebeck effect, transverse devices utilizing the anomalous Nernst effect (ANE) have recently attracted interest. For high conversion efficiency, it is required that the material have a large ANE thermoelectric power and low electrical resistance, which lead to the conductivity of the ANE.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2020
The spin-Seebeck effect (SSE) is an advective transport process traditionally studied in bilayers composed of a ferromagnet (FM) and a non-magnetic metal (NM) with strong spin-orbit coupling. In a temperature gradient, the flux of magnons in the FM transfers spin-angular momentum to electrons in the NM, which by the inverse spin-Hall effect generates an SSE voltage. In contrast, the Nernst effect is a bulk transport phenomenon in homogeneous NMs or FMs.
View Article and Find Full Text PDFTransverse thermoelectric devices produce electric fields perpendicular to an incident heat flux. Classically, this process is driven by the Nernst effect in bulk solids, wherein a magnetic field generates a Lorentz force on thermally excited electrons. The spin Seebeck effect also produces magnetization-dependent transverse electric fields.
View Article and Find Full Text PDFPhonons are displacements of atoms around their rest positions in a crystalline solid. They carry sound and heat, but are not classically associated with magnetism. Here, we show that phonons are, in fact, sensitive to magnetic fields, even in diamagnetic materials.
View Article and Find Full Text PDF