Glycopolymers of statistical and block configurations were synthesized from 2-lactobionamidoethyl methacrylamide (LAEMA) and 2-aminoethyl methacrylamide hydrochloride (AEMA) by the reversible addition-fragmentation chain transfer (RAFT) polymerization. These cationic glycopolymers were found to form very stable polyplexes with EGFR siRNA as determined by dynamic light scattering and agarose gel electrophoresis. The polyplexes revealed to be very stable even in the presence of serum proteins.
View Article and Find Full Text PDFIn this study, galactose-based nanogels were prepared by reversible addition-fragmentation chain transfer process to facilitate the targeted delivery of iodoazomycin arabinofuranoside (IAZA), a clinical drug for imaging solid hypoxic tumors, and evaluate its role in hypoxia-selective (radio)theranostic (therapy + diagnostic) management of therapy-resistant cancer cells. The nanogels have a cross-linked temperature-responsive core and a dense carbohydrate shell. Their thermoresponsive nature allowed the controlled encapsulation of IAZA drug for targeted delivery and release in hypoxic hepatocellular carcinoma via asialoglycoprotein receptor-mediated uptake.
View Article and Find Full Text PDFIn this study, statistical glyco-dithiocarbamate (DTC) copolymers were synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) and subsequently used to prepare glyconanoparticles and conjugated glyconanoparticles with the anticancer drug, gold(I) triphenylphosphine. These glyconanoparticles and the corresponding conjugates were then tested for their in vitro cytotoxicity in both normal and cancer cell lines using Neutral Red assay. The glyconanoparticles and their Au(I)PPh3 conjugates were all active against MCF7 and HepG2 cells, but galactose-functionalized glyconanoparticles {P(GMA-EDAdtc(AuPPh3)-st-LAEMA)AuNP} were found to be the most cytotoxic to HepG2 cells (IC50 ∼ 4.
View Article and Find Full Text PDF