We report the synthesis and characterization of a family of organometallic cobalt(I) metal precursors based around cyclopentadienyl and diene ligands. The molecular structures of the complexes cyclopentadienyl-cobalt(I) diolefin complexes are described, as determined by single-crystal X-ray diffraction analysis. Thermogravimetric analysis and thermal stability studies of the complexes highlighted the isoprene, dimethyl butadiene, and cyclohexadiene derivatives [(C5H5)Co(η(4)-CH2CHC(Me)CH2)] (1), [(C5H5)Co(η(4)-CH2C(Me)C(Me)CH2)] (2), and [(C5H5)Co(η(4)-C6H8)] (4) as possible cobalt metal organic chemical vapor deposition (MOCVD) precursors.
View Article and Find Full Text PDFWe report the synthesis and characterisation of a new family of copper(i) metal precursors based around alkoxy-N,N'-di-alkyl-ureate ligands, and their subsequent application in the production of pure copper thin films. The molecular structure of the complexes bis-copper(i)(methoxy-N,N'-di-isopropylureate) (1) and bis-copper(i)(methoxy-N,N'-di-cyclohexylureate)(5) are described, as determined by single crystal X-ray diffraction analysis. Thermogravimetric analysis of the complexes highlighted complex 1 as a possible copper CVD precursor.
View Article and Find Full Text PDFA series of multinuclear Copper(I) guanidinate complexes have been synthesized in a succession of reactions between CuCl and the lithium guanidinate systems Li{L} (L = Me(2)NC((i)PrN)(2) (1a), Me(2)NC(CyN)(2) (1b), Me(2)NC((t)BuN)(2)(1c), and Me(2)NC(DipN)(2) (2d) ((i)Pr = iso-propyl, Cy = cyclohexyl, (t)Bu = tert-butyl, and Dip = 2,6-disopropylphenyl) made in situ, and structurally characterized. The di-copper guanidinates systems with the general formula [Cu(2){L}(2)] (L = {Me(2)NC((i)PrN)(2)} (2a), {Me(2)NC(CyN)(2)} (2b), and {Me(2)NC(DipN)(2)} (2d) differed significantly from related amidinate complexes because of a large torsion of the dimer ring, which in turn is a result of transannular repulsion between adjacent guanidinate substituents. Attempts to synthesis the tert-butyl derivative [Cu(2){Me(2)NC((t)BuN)(2)}(2)] result in the separate formation and isolation of the tri-copper complexes [Cu(3){Me(2)NC((t)BuN)(2)}(2)(μ-NMe(2))] (3c) and [Cu(3){Me(2)NC((t)BuN)(2)}(2)(μ-Cl)] (4c), both of which have been unambiguously characterized by single crystal X-ray diffraction.
View Article and Find Full Text PDFWe report here a synthetic route to bis(N,N'-aryl)-6-aminofulvene-2-aldimine (AFA) ligand systems, specifically Ph(2)-AFAH and Dip(2)-AFAH. The synthesis and structural characterization of a series of Cu(I) complexes [(Ph(2)-AFA)Cu(CNPh)(2)] (2), [(Ph(2)-AFA)Cu(CN(i)Pr)] (3), and [(Dip(2)-AFA)Cu(CN(i)Pr)] (4), from the reaction of the corresponding lithiated AFA systems with Cu-Cl derivatives are reported; notably in the case of [(Ph(2)-AFA)Cu(CNPh)(2)] studies have revealed the existence of two structural isomers (2a and 2b), both of which can be isolated and structurally characterized. Density functional theory (DFT) calculations suggest that the two crystal forms are comparatively close in energy, and geometry optimization reveals a convergence of these two forms to a geometry that more closely resembles the solid-state structure of isomer 2b, having a CH···π interaction.
View Article and Find Full Text PDFA homologous and homoleptic series of stable Group 11 metal triazenide complexes with the general formula [M(L')](n) (M = Cu or Au, n = 2; M = Ag, n = 3) featuring the bulky triazenide ligand N,N'-bis(2,6-di-isopropylphenyl)triazene, L'H, have been prepared by the reaction of Li[L'] with the metal chlorides, CuCl, AgCl, and [(THT)AuCl], respectively, in a 1:1 stoichiometric ratio. The compounds [Cu(2)(L')(2)] and [Au(2)(L')(2)] crystallized as dimers with M..
View Article and Find Full Text PDFReaction of Al(OiPr)3 with the tris-phenol amine ligand L1H3 in toluene at ambient temperature results in the formation of the iso-propanol adduct [HOiPr.Al(L1)]. Single crystal X-ray diffraction analysis reveals the structure to be a hydrogen bonded dimer.
View Article and Find Full Text PDFThe stoichiometric reaction between thiols and maleimide-functional poly(ester)s is demonstrated to be a quantitative, tolerant, mild and efficient method for polymer modification.
View Article and Find Full Text PDFThermolysis of Ru(PPh3)3(CO)H2 with the N-heterocyclic carbene bis(1,3-(2,4,6-trimethylphenyl)imidazol-2-ylidene) (IMes) results in C-C activation of an Ar-CH3 bond in one of the mesityl rings of the carbene ligand. Upon addition of IMes to Ru(PPh3)3(CO)H2 at room temperature in the presence of an alkene, C-H bond activation is observed instead. The thermodynamics of these C-C and C-H cleavage reactions have been probed using density functional theory.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2002