Publications by authors named "Stephen P Jordan"

Magnetic resonance fingerprinting (MRF) is a method to extract quantitative tissue properties such as [Formula: see text] and [Formula: see text] relaxation rates from arbitrary pulse sequences using conventional MRI hardware. MRF pulse sequences have thousands of tunable parameters, which can be chosen to maximize precision and minimize scan time. Here, we perform de novo automated design of MRF pulse sequences by applying physics-inspired optimization heuristics.

View Article and Find Full Text PDF

Two of the key properties of quantum physics are the no-signaling principle and the Grover search lower bound. That is, despite admitting stronger-than-classical correlations, quantum mechanics does not imply superluminal signaling, and despite a form of exponential parallelism, quantum mechanics does not imply polynomial-time brute force solution of NP-complete problems. Here, we investigate the degree to which these two properties are connected.

View Article and Find Full Text PDF

Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling.

View Article and Find Full Text PDF

The computational cost of exact methods for quantum simulation using classical computers grows exponentially with system size. As a consequence, these techniques can be applied only to small systems. By contrast, we demonstrate that quantum computers could exactly simulate chemical reactions in polynomial time.

View Article and Find Full Text PDF

Given a black box for f, a smooth real scalar function of d real variables, one wants to estimate [symbol: see text]f at a given point with n bits of precision. On a classical computer this requires a minimum of d + 1 black box queries, whereas on a quantum computer it requires only one query regardless of d. The number of bits of precision to which f must be evaluated matches the classical requirement in the limit of large n.

View Article and Find Full Text PDF

Graphene cones have two degenerate configurations: their original shape and its inverse. When the apex is depressed by an external probe, the simulated mechanical response is highly nonlinear, with a broad constant-force mode appearing after a short initial Hooke's law regime. For chiral cones, the final state is an atomically exact chiral invert of the original system.

View Article and Find Full Text PDF