Publications by authors named "Stephen P Fox"

Oestrogen receptor α (ERα) is a nuclear receptor that is the driving transcription factor expressed in the majority of breast cancers. Recent studies have demonstrated that the liver receptor homolog-1 (LRH-1), another nuclear receptor, regulates breast cancer cell proliferation and promotes motility and invasion. To determine the mechanisms of LRH-1 action in breast cancer, we performed gene expression microarray analysis following RNA interference for LRH-1.

View Article and Find Full Text PDF

RNA interference (RNAi) represents a promising new gene silencing technology for functional genomics and a potential therapeutic strategy for a variety of genetic diseases. RNAi involves the targeted post-transcriptional degradation of messenger RNA thereby inhibiting the synthesis of the desired protein. This effectively leads to silencing of gene expression.

View Article and Find Full Text PDF

RNA interference (RNAi) is a natural cellular process that effects post-transcriptional gene silencing in eukaryotic systems. Small interfering RNA (siRNA) molecules are the key intermediaries in this process which when exogenously administered can inhibit or "silence" the expression of any given target gene. Thus, siRNA molecules hold great promise as biological tools and as potential therapeutic agents for targeted inhibition of disease-causing genes.

View Article and Find Full Text PDF

Gene silencing nucleic acids such as ribozymes, DNA enzymes (DNAzymes), antisense oligonucleotides (ODNs), and small interfering (si)RNA rely on hybridization to accessible sites within target mRNA for activity. However, the accurate prediction of hybridization accessible sites within mRNAs for design of effective gene silencing reagents has been problematic. Here we have evaluated the use of scanning arrays for the effective design of ribozymes, DNAzymes and siRNA sequences targeting the epidermal growth factor receptor (EGFR) mRNA.

View Article and Find Full Text PDF