High-throughput assays generate immense quantities of data that require sophisticated data analysis tools. We have created a freely available software tool, SLIMS (Small Laboratory Information Management System), for chemical genetics which facilitates the collection and analysis of large-scale chemical screening data. Compound structures, physical locations, and raw data can be loaded into SLIMS.
View Article and Find Full Text PDFMost patients with the pediatric neurodegenerative disease spinal muscular atrophy have a homozygous deletion of the survival motor neuron 1 (SMN1) gene, but retain one or more copies of the closely related SMN2 gene. The SMN2 gene encodes the same protein (SMN) but produces it at a low efficiency compared with the SMN1 gene. We performed a high-throughput screen of approximately 47,000 compounds to identify those that increase production of an SMN2-luciferase reporter protein, but not an SMN1-luciferase reporter protein.
View Article and Find Full Text PDFWe present a method for testing many biological mechanisms in cellular assays using an annotated library of 2036 small organic molecules. This annotated compound library represents a large-scale collection of compounds with diverse, experimentally confirmed biological mechanisms and effects. We found that this chemical library is (1) more structurally diverse than conventional, commercially available libraries, (2) enriched in active compounds in a tumor cell viability assay, and (3) capable of generating hypotheses regarding biological mechanisms underlying cellular processes.
View Article and Find Full Text PDF