In mammals, the leucine-rich pentatricopeptide repeat protein (LRPPRC) and the stem-loop interacting RNA-binding protein (SLIRP) form a complex in the mitochondrial matrix that is required throughout the life cycle of most mitochondrial mRNAs. Although pathogenic mutations in the LRPPRC and SLIRP genes cause devastating human mitochondrial diseases, the in vivo function of the corresponding proteins is incompletely understood. We show here that loss of SLIRP in mice causes a decrease of complex I levels whereas other OXPHOS complexes are unaffected.
View Article and Find Full Text PDFMitochondrial dynamics play a critical role in cell fate decisions and in controlling mtDNA levels and distribution. However, the molecular mechanisms linking mitochondrial membrane remodeling and quality control to mtDNA copy number (CN) regulation remain elusive. Here, we demonstrate that the inner mitochondrial membrane (IMM) protein mitochondrial fission process 1 (MTFP1) negatively regulates IMM fusion.
View Article and Find Full Text PDFMutations of mitochondrial (mt)DNA are a major cause of morbidity and mortality in humans, accounting for approximately two thirds of diagnosed mitochondrial disease. However, despite significant advances in technology since the discovery of the first disease-causing mtDNA mutations in 1988, the comprehensive diagnosis and treatment of mtDNA disease remains challenging. This is partly due to the highly variable clinical presentation linked to tissue-specific vulnerability that determines which organs are affected.
View Article and Find Full Text PDFMitochondrial activity differs markedly between organs, but it is not known how and when this arises. Here we show that cell lineage-specific expression profiles involving essential mitochondrial genes emerge at an early stage in mouse development, including tissue-specific isoforms present before organ formation. However, the nuclear transcriptional signatures were not independent of organelle function.
View Article and Find Full Text PDFThe mammalian mitochondrial (mt)DNA is a small, circular, double-stranded, intra-mitochondrial DNA molecule, encoding 13 subunits of the electron transport chain. Unlike the diploid nuclear genome, most cells contain many more copies of mtDNA, ranging from less than 100 to over 200,000 copies depending on cell type. MtDNA copy number is increasingly used as a biomarker for a number of age-related degenerative conditions and diseases, and thus, accurate measurement of the mtDNA copy number is becoming a key tool in both research and diagnostic settings.
View Article and Find Full Text PDFHeteroplasmic mitochondrial DNA (mtDNA) mutations are a common cause of inherited disease, but a few recurrent mutations account for the vast majority of new families. The reasons for this are not known. We studied heteroplasmic mice transmitting m.
View Article and Find Full Text PDF2-oxoglutarate (2-OG or α-ketoglutarate) relates mitochondrial metabolism to cell function by modulating the activity of 2-OG dependent dioxygenases involved in the hypoxia response and DNA/histone modifications. However, metabolic pathways that regulate these oxygen and 2-OG sensitive enzymes remain poorly understood. Here, using CRISPR Cas9 genome-wide mutagenesis to screen for genetic determinants of 2-OG levels, we uncover a redox sensitive mitochondrial lipoylation pathway, dependent on the mitochondrial hydrolase ABHD11, that signals changes in mitochondrial 2-OG metabolism to 2-OG dependent dioxygenase function.
View Article and Find Full Text PDFmtDNA is a multicopy genome. When mutations exist, they can affect a varying proportion of the mtDNA present within every cell (heteroplasmy). Heteroplasmic mtDNA mutations can be maternally inherited, but the proportion of mutated alleles differs markedly between offspring within one generation.
View Article and Find Full Text PDFMisfolded or damaged proteins are typically targeted for destruction by proteasome-mediated degradation, but the mammalian ubiquitin machinery involved is incompletely understood. Here, using forward genetic screens in human cells, we find that the proteasome-mediated degradation of the soluble misfolded reporter, mCherry-CL1, involves two ER-resident E3 ligases, MARCH6 and TRC8. mCherry-CL1 degradation is routed via the ER membrane and dependent on the hydrophobicity of the substrate, with complete stabilisation only observed in double knockout MARCH6/TRC8 cells.
View Article and Find Full Text PDFTrends Endocrinol Metab
April 2018
Alterations in mitochondrial metabolism influence cell differentiation and growth. This process is regulated by the activity of 2-oxoglutarate (2OG)-dependent dioxygenases (2OGDDs) - a diverse superfamily of oxygen-consuming enzymes - through modulation of the epigenetic landscape and transcriptional responses. Recent reports have described the role of mitochondrial metabolites in directing 2OGDD-driven cell-fate switches in stem cells (SCs), immune cells, and cancer cells.
View Article and Find Full Text PDFInherited mutations in the mitochondrial (mt)DNA are a major cause of human disease, with approximately 1 in 5000 people affected by one of the hundreds of identified pathogenic mtDNA point mutations or deletions. Due to the severe, and often untreatable, symptoms of many mitochondrial diseases, identifying how these mutations are inherited from one generation to the next has been an area of intense research in recent years. Despite large advances in our understanding of this complex process, many questions remain unanswered, with one of the most hotly debated being whether or not purifying selection acts against pathogenic mutations during germline development.
View Article and Find Full Text PDFHypoxia Inducible transcription Factors (HIFs) are principally regulated by the 2-oxoglutarate and Iron(II) prolyl hydroxylase (PHD) enzymes, which hydroxylate the HIFα subunit, facilitating its proteasome-mediated degradation. Observations that HIFα hydroxylation can be impaired even when oxygen is sufficient emphasise the importance of understanding the complex nature of PHD regulation. Here, we use an unbiased genome-wide genetic screen in near-haploid human cells to uncover cellular processes that regulate HIF1α.
View Article and Find Full Text PDFHypoxia-inducible transcription factors (HIFs) control adaptation to low oxygen environments by activating genes involved in metabolism, angiogenesis, and redox homeostasis. The finding that HIFs are also regulated by small molecule metabolites highlights the need to understand the complexity of their cellular regulation. Here we use a forward genetic screen in near-haploid human cells to identify genes that stabilize HIFs under aerobic conditions.
View Article and Find Full Text PDFIn recent years, mesenchymal stromal cells (MSCs) and regulatory T cells (Tregs) have both garnered significant interest from immunologists worldwide, not least because of the potential application of both cell types in the treatment of many chronic inflammatory and autoimmune diseases. Although both MSCs and Tregs can be considered immunosuppressive in their own right, the induction of Tregs by activated MSCs is now a well-publicised phenomenon; however, only recently have the mechanisms involved in this induction started to become clear. Indeed, it is becoming increasingly apparent that there exists a complex interplay between the two lineages leading to this potent inhibition of the host immune response.
View Article and Find Full Text PDF