Inflammatory processes are activated following ischemic stroke that lead to increased tissue damage for weeks following the ischemic insult, but there are no approved therapies that target this inflammation-induced secondary injury. Here, we report that SynB1-ELP-p50i, a novel protein inhibitor of the nuclear factor kappa B (NF-κB) inflammatory cascade bound to the drug carrier elastin-like polypeptide (ELP), decreases NF-κB induced inflammatory cytokine production in cultured macrophages, crosses the plasma membrane and accumulates in the cytoplasm of both neurons and microglia in vitro, and accumulates at the infarct site where the blood-brain barrier (BBB) is compromised following middle cerebral artery occlusion (MCAO) in rats. Additionally, SynB1-ELP-p50i treatment reduces infarct volume by 11.
View Article and Find Full Text PDFInflammatory processes are activated following ischemic strokes and lead to increased tissue damage for weeks following the ischemic insult, but there are no approved therapies that target this inflammation-induced secondary injury. Here, we report that SynB1-ELP-p50i, a novel protein inhibitor of the nuclear factor kappa B (NF-κB) inflammatory cascade bound to drug carrier elastin-like polypeptide (ELP), is able to enter both neurons and microglia, cross the blood-brain barrier, localize exclusively in the ischemic core and penumbra in Wistar-Kyoto and spontaneously hypertensive rats (SHRs), and reduce infarct volume in male SHRs. Additionally, in male SHRs, SynB1-ELP-p50i treatment improves survival for 14 days following stroke with no effects of toxicity or peripheral organ dysfunction.
View Article and Find Full Text PDFVascular Endothelial Growth Factor (VEGF), a key mediator of angiogenesis and vascular repair, is reduced in chronic ischemic renal diseases, leading to microvascular rarefaction and deterioration of renal function. We developed a chimeric fusion of human VEGF-A with the carrier protein Elastin-like Polypeptide (ELP-VEGF) to induce therapeutic angiogenesis via targeted renal VEGF therapy. We previously showed that ELP-VEGF improves renal vascular density, renal fibrosis, and renal function in swine models of chronic renal diseases.
View Article and Find Full Text PDFTNF-related apoptosis-inducing ligand (TRAIL) was initially described to induce apoptosis of tumor cells and/or virally infected cells, although sparing normal cells, and has been implicated in the pathogenesis of HIV disease. We previously identified TRAILshort, a TRAIL splice variant, in HIV-infected patients and characterized it as being a dominant negative ligand to subvert TRAIL-mediated killing. Herein, using single-cell genomics we demonstrate that TRAILshort is produced by HIV-infected cells, as well as by uninfected bystander cells, and that the dominant stimulus which induces TRAILshort production are type I IFNs and TLR7, TLR8, and TLR9 agonists.
View Article and Find Full Text PDFThe four residues at the amino-terminus of mature Smac/DIABLO are an IAP binding motif (IBM). Upon exit from mitochondria, mature Smac interacts with inhibitor of apoptosis proteins (IAPs), abrogating caspase inhibition. We used the ubiquitin fusion model to express mature Smac in the cytosol.
View Article and Find Full Text PDFAlthough early studies of inhibitor of apoptosis proteins (IAPs) suggested that cIAP1 directly binds and inhibits caspases similarly to X-linked IAP (XIAP), a recent one found that micromolar concentrations of cIAP1 only weakly inhibit caspase-3, -7, or -9. Here, we show that cIAP1 specifically and cooperatively blocks the cytochrome c-dependent apoptosome in vitro. Hence, cIAP1 prevented the activation of procaspase-3 but had no effect on the processing of procaspase-9 or the activity of prior activated caspase-3.
View Article and Find Full Text PDFPrevious molecular analyses of human astrocytomas have identified many genetic changes associated with astrocytoma formation and progression. In an effort to identify novel gene expression changes associated with astrocytoma formation, which might reveal new potential targets for glioma therapeutic drug design, we used the B8-RAS-transgenic mouse astrocytoma model. Using multiplex gene expression profiling, we found that growth-associated protein 43 (GAP43) RNA and protein expression were lost in select human and mouse glioma cell lines.
View Article and Find Full Text PDFTuberous sclerosis complex (TSC) is an autosomal dominant tumor predisposition syndrome characterized by benign proliferations (hamartomas). In the brain, individuals with TSC develop autism, mental retardation and seizures associated with focal cortical dysplasias, subependymal nodules, and subependymal giant cell astrocytomas (SEGAs). We hypothesize that dysregulated astrocyte function due to mutations in the tumor suppressor genes, TSC1 and TSC2, may contribute to the pathogenesis of these brain abnormalities.
View Article and Find Full Text PDF