Proc Natl Acad Sci U S A
January 2025
The effects of T cell differentiation arising from immune checkpoint inhibition targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) on the immunological memory response remain unclear. Our investigation into the effects of anti-CTLA-4 and anti-PD-1 on memory T cell formation in mice reveals that memory T cells generated by anti-CTLA-4 exhibit greater expansion, cytokine production, and antitumor activity than those from anti-PD-1. Notably, anti-CTLA-4 preserves more T cell factor-1 (TCF-1)+ T cells during priming, while anti-PD-1 leads to more thymocyte selection-associated high mobility group box (TOX)+ T cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2024
Immune checkpoint therapies (ICT) improve overall survival of patients with cancer but may cause immune-related adverse events (irAEs) such as myocarditis. Cytotoxic T lymphocyte-associated antigen 4 immunoglobulin fusion protein (CTLA-4 Ig), an inhibitor of T cell costimulation through CD28, reverses irAEs in animal models. However, concerns exist about potentially compromising antitumor response of ICT.
View Article and Find Full Text PDFThe combination of targeted therapy with BRAF and MEK inhibitors has become the standard of care in patients with BRAF (V600E) mutant melanoma, but responses are not durable. In addition, the impressive clinical benefits with anti-PD-1 and anti-PD-L1 antibodies (Ab) in patients with heavily pretreated metastatic melanoma and the synergistic effect of dabrafenib, trametinib and anti-PD-1 compared with single therapy alone groups support the idea that combining dabrafenib, trametinib and immunotherapy based on PD-1 blockade could be an interesting approach in the treatment of metastatic melanoma. With our mouse model of syngeneic BRAF (V600E) driven melanoma (SM1), we tested whether the addition of an immunostimulatory Ab targeting CD137 (4-1BB) and/or CD134 (OX40) would enhance the antitumor effect of dabrafenib, trametinib and anti-PD-1 or anti-PD-L1 therapy.
View Article and Find Full Text PDFThe rapidly advancing field of cancer immunotherapy is currently limited by the scarcity of noninvasive and quantitative technologies capable of monitoring the presence and abundance of CD8(+) T cells and other immune cell subsets. In this study, we describe the generation of (89)Zr-desferrioxamine-labeled anti-CD8 cys-diabody ((89)Zr-malDFO-169 cDb) for noninvasive immuno-PET tracking of endogenous CD8(+) T cells. We demonstrate that anti-CD8 immuno-PET is a sensitive tool for detecting changes in systemic and tumor-infiltrating CD8 expression in preclinical syngeneic tumor immunotherapy models including antigen-specific adoptive T-cell transfer, agonistic antibody therapy (anti-CD137/4-1BB), and checkpoint blockade antibody therapy (anti-PD-L1).
View Article and Find Full Text PDFBackground: Malignant melanoma is an aggressive tumor type that often develops drug resistance to targeted therapeutics. The production of colony stimulating factor 1 (CSF-1) in tumors recruits myeloid cells such as M2-polarized macrophages and myeloid derived suppressor cells (MDSC), leading to an immune suppressive tumor milieu.
Methods: We used the syngeneic mouse model of BRAF (V600E) -driven melanoma SM1, which secretes CSF-1, to evaluate the ability of the CSF-1 receptor (CSF-1R) inhibitor PLX3397 to improve the antitumor efficacy of the oncogenic BRAF inhibitor vemurafenib.
Combining immunotherapy and BRAF targeted therapy may result in improved antitumor activity with the high response rates of targeted therapy and the durability of responses with immunotherapy. However, the first clinical trial testing the combination of the BRAF inhibitor vemurafenib and the CTLA4 antibody ipilimumab was terminated early because of substantial liver toxicities. MEK [MAPK (mitogen-activated protein kinase) kinase] inhibitors can potentiate the MAPK inhibition in BRAF mutant cells while potentially alleviating the unwanted paradoxical MAPK activation in BRAF wild-type cells that lead to side effects when using BRAF inhibitors alone.
View Article and Find Full Text PDFTargeting immune inhibitory receptors has brought excitement, innovation and hope to cancer patients. Our recent work revealed the immunological effects of blocking the CTLA4 and PD-1 immune checkpoints on T cell receptor usage among peripheral blood cells, and further uncovers how the expansion of the T cell repertoire matches the immunotoxicity profile of the therapy.
View Article and Find Full Text PDFPurpose: To evaluate the immunomodulatory effects of cytotoxic T-lymphocyte-associated protein 4 (CTLA4) blockade with tremelimumab in peripheral blood mononuclear cells (PBMC).
Experimental Design: We used next-generation sequencing to study the complementarity-determining region 3 (CDR3) from the rearranged T-cell receptor (TCR) variable beta (V-beta) in PBMCs of 21 patients, at baseline and 30 to 60 days after receiving tremelimumab.
Results: After receiving tremelimumab, there was a median of 30% increase in unique productive sequences of TCR V-beta CDR3 in 19 out of 21 patients, and a median decrease of 30% in only 2 out of 21 patients.
Colony stimulating factor 1 (CSF-1) recruits tumor-infiltrating myeloid cells (TIM) that suppress tumor immunity, including M2 macrophages and myeloid-derived suppressor cells (MDSC). The CSF-1 receptor (CSF-1R) is a tyrosine kinase that is targetable by small molecule inhibitors such as PLX3397. In this study, we used a syngeneic mouse model of BRAF(V600E)-driven melanoma to evaluate the ability of PLX3397 to improve the efficacy of adoptive cell therapy (ACT).
View Article and Find Full Text PDFThe BRAF mutant, BRAF(V600E), is expressed in nearly half of melanomas, and oral BRAF inhibitors induce substantial tumor regression in patients with BRAF(V600E) metastatic melanoma. The inhibitors are believed to work primarily by inhibiting BRAF(V600E)-induced oncogenic MAPK signaling; however, some patients treated with BRAF inhibitors exhibit increased tumor immune infiltration, suggesting that a combination of BRAF inhibitors and immunotherapy may be beneficial. We used two relatively resistant variants of Braf(V600E)-driven mouse melanoma (SM1 and SM1WT1) and melanoma-prone mice to determine the role of host immunity in type I BRAF inhibitor PLX4720 antitumor activity.
View Article and Find Full Text PDFRadiotherapy is used to treat many types of cancer, but many treated patients relapse with local tumor recurrence. Tumor-infiltrating myeloid cells (TIM), including CD11b (ITGAM)(+)F4/80 (EMR1)+ tumor-associated macrophages (TAM), and CD11b(+)Gr-1 (LY6G)+ myeloid-derived suppressor cells (MDSC), respond to cancer-related stresses and play critical roles in promoting tumor angiogenesis, tissue remodeling, and immunosuppression. In this report, we used a prostate cancer model to investigate the effects of irradiation on TAMs and MDSCs in tumor-bearing animals.
View Article and Find Full Text PDFCombining immunotherapy with targeted therapy blocking oncogenic BRAFV600 may result in improved treatments for advanced melanoma. In this study, we developed a BRAFV600E-driven murine model of melanoma, SM1, which is syngeneic to fully immunocompetent mice. SM1 cells exposed to the BRAF inhibitor vemurafenib (PLX4032) showed partial in vitro and in vivo sensitivity resulting from the inhibition of MAPK pathway signaling.
View Article and Find Full Text PDFBackground: TAK733 is a novel allosteric, non-ATP-binding, inhibitor of the BRAF substrates MEK-1/2.
Methods: The growth inhibitory effects of TAK733 were assessed in a panel of 27 cutaneous and five uveal melanoma cell lines genotyped for driver oncogenic mutations. Flow cytometry, Western blots and metabolic tracer uptake assays were used to characterize the changes induced by exposure to TAK733.
Background: Cutaneous squamous-cell carcinomas and keratoacanthomas are common findings in patients treated with BRAF inhibitors.
Methods: We performed a molecular analysis to identify oncogenic mutations (HRAS, KRAS, NRAS, CDKN2A, and TP53) in the lesions from patients treated with the BRAF inhibitor vemurafenib. An analysis of an independent validation set and functional studies with BRAF inhibitors in the presence of the prevalent RAS mutation was also performed.
Background: CTLA4 blocking monoclonal antibodies provide durable clinical benefit in a subset of patients with advanced melanoma mediated by intratumoral lymphocytic infiltrates. A key question is defining whether the intratumoral infiltration (ITI) is a differentiating factor between patients with and without tumor responses.
Methods: Paired baseline and postdosing tumor biopsy specimens were prospectively collected from 19 patients with metastatic melanoma, including 3 patients with an objective tumor response, receiving the anti-CTLA4 antibody tremelimumab within a clinical trial with primary endpoint of quantitating CD8(+) cytotoxic T-lymphocyte (CTL) infiltration in tumors.
A key issue in advancing the use of adoptive cell transfer (ACT) of T cell receptor (TCR) engineered lymphocytes for cancer therapy is demonstrating how TCR transgenic cells repopulate lymphopenic hosts and target tumors in an antigen-specific fashion. ACT of splenocytes from fully immunocompetent HLA-A2.1/K(b) mice transduced with a chimeric murine/human TCR specific for tyrosinase, together with lymphodepletion conditioning, dendritic cell (DC)-based vaccination, and high-dose interleukin-2 (IL-2), had profound antitumor activity against large established MHC- and antigen-matched tumors.
View Article and Find Full Text PDFBlocking oncogenic signaling induced by the BRAFV600E mutation is a promising approach for melanoma treatment. We tested the anti-tumor effects of a specific inhibitor of Raf protein kinases, PLX4032/RG7204, in melanoma cell lines. PLX4032 decreased signaling through the MAPK pathway only in cell lines with the BRAFV600E mutation.
View Article and Find Full Text PDFTumors grow in the presence of antigen-specific T cells, suggesting the existence of intrinsic cancer cell escape mechanisms. We hypothesized that a histone deacetylase (HDAC) inhibitor could sensitize tumor cells to immunotherapy because this class of agents has been reported to increase tumor antigen expression and shift gene expression to a proapoptotic milieu in cancer cells. To test this question, we treated B16 murine melanoma with the combination of the HDAC inhibitor LAQ824 and the adoptive transfer of gp100 melanoma antigen-specific pmel-1 T cells.
View Article and Find Full Text PDFSeveral tumor immunotherapy approaches result in a low percentage of durable responses in selected cancers. We hypothesized that the insensitivity of cancer cells to immunotherapy may be related to an anti-apoptotic cancer cell milieu, which could be pharmacologically reverted through the inhibition of antiapoptotic Bcl-2 family proteins in cancer cells. ABT-737, a small molecule inhibitor of the antiapoptotic proteins Bcl-2, Bcl-w and Bcl-x(L), was tested for the ability to increase antitumor immune responses in two tumor immunotherapy animal models.
View Article and Find Full Text PDF