Purpose: It is not known whether motor and sensory pathways associated with a missing or denervated limb remain functionally intact over periods of many months or years after amputation or chronic peripheral nerve transection injury. We examined the extent to which activity on chronically severed motor nerve fibers could be controlled by human amputees and whether distally referred tactile and proprioceptive sensations could be induced by stimulation of sensory axons in the nerve stumps.
Methods: Amputees undergoing elective stump procedures were invited to participate in this study.
We describe new manufacturing techniques and physical properties of an improved polymer-based longitudinal intrafascicular electrode (polyLIFE). Modifications were made to correct: (1) poor metal film adhesion and fatigue resistance, (2) inconsistent insulation adhesion and control over recording/stimulation zone length, and (3) insufficient tensile strength for clinical use. Metal adhesion was significantly improved by both plasma treatment and fiber rotation (about the long axis) during metal deposition.
View Article and Find Full Text PDFPolymer-based longitudinal intrafascicular electrodes (polyLIFEs) were chronically implanted into the sciatic nerve of white New Zealand rabbits (n=8) for a period of 6 months (hereafter referred to as the long-term group). The impact of the implantation procedure, as observed 6 months post surgery, was evaluated in a sham-treated control group (n=9). The contralateral sciatic nerve served as the control for each animal.
View Article and Find Full Text PDF