The volume of stormwater generated by streetscapes in cities is a primary driver of urban stream degradation. Large infiltration trenches can be integrated into streetscapes to potentially retain large volumes of runoff and increase growth rates of nearby trees. To test this, a field study was conducted where three structural soil infiltration trenches receiving runoff (12 m long, 0.
View Article and Find Full Text PDFNaturalistic plantings, such as meadow-style plantings, can improve the quality of urban green spaces through aesthetic, biodiversity and low maintenance features. Species selection for, and maintenance of naturalistic plantings are key to their success. While herbaceous and grassy meadows can be mowed, naturalistic plantings with woody plants require more intense maintenance to remove biomass and promote resprouting.
View Article and Find Full Text PDFImpervious surfaces create large volumes of stormwater which degrades receiving waterways. Incorporating trees into biofilters can increase evapotranspiration and therefore reduce stormwater runoff. Tree species with i) high water use, ii) drought tolerance and iii) rapid and full recovery after drought have been suggested for biofilters to maximise runoff reduction while minimising drought stress.
View Article and Find Full Text PDFRainfall in cities can generate large volumes of stormwater runoff which degrades receiving waterways. Irrigating trees with runoff (passive irrigation) has the potential to increase transpiration and contribute to stormwater management by reducing runoff received by downstream waterways, but the stochastic nature of rainfall may expose trees with high transpiration to drought stress. We hypothesized that for success in passive irrigation systems, tree species should exhibit i) high maximum transpiration rates under well-watered conditions, ii) drought avoidance between rainfall events, and iii) high recovery of transpiration with rainfall following a drought.
View Article and Find Full Text PDFMost studies of urban forest management look at vegetation on public land. Yet, to meet ambitious urban forest targets, cities must attempt to maintain or increase trees and canopy cover on private urban land too. In this study, we review and evaluate international approaches to protecting and retaining trees on private urban land.
View Article and Find Full Text PDFAnalysing the climate envelope of plant species has been suggested as a tool to predict the vulnerability of tree species in future urban climates. However, there is little evidence that the climate envelope of a plant species directly relates to the drought and thermal tolerance of that species, at least not at the resolution required to identify or rank species vulnerability. Here, we attempted to predict drought and thermal tolerance of commonly used urban tree species using climate variables derived exclusively from open-source global occurrence data.
View Article and Find Full Text PDFEvapotranspiration is an important aspect of the hydrological cycle in natural landscapes. In cities, evapotranspiration is typically limited by reduced vegetation and extensive impervious surfaces. Stormwater control measures (SCMs) seek, among other objectives, to move the urban hydrological cycle towards pre-development conditions, promoting processes such as infiltration and evapotranspiration.
View Article and Find Full Text PDFSoil compaction can be a major impediment to tree growth as it damages soil physical and biological properties and reduces plant available water. This may result in trees that are more vulnerable to seasonal water stress. Improving soil physical and biological properties by increasing soil organic matter content may lead to improved tree establishment.
View Article and Find Full Text PDFLarge trees are often seen as a means of offsetting negative consequences of growing urban densification. To increase the tree canopy cover of dense urban landscapes, developers, planners and urban tree managers are often forced to plant into damaged and compacted sites. Compacted urban soils can hinder the establishment and growth of deep rooted, woody plants by: 1) impeding root exploration and development which is critical for water and nutrient acquisition; 2) reducing infiltration of water into the soil and the availability of water to plants; and 3) reducing gas exchange and the balance between anaerobic and aerobic conditions.
View Article and Find Full Text PDFInsects are key components of urban ecological networks and are greatly impacted by anthropogenic activities. Yet, few studies have examined how insect functional groups respond to changes to urban vegetation associated with different management actions. We investigated the response of herbivorous and predatory heteropteran bugs to differences in vegetation structure and diversity in golf courses, gardens and parks.
View Article and Find Full Text PDFMaintaining human thermal comfort (HTC) is essential for pedestrians because people outside can be more susceptible to heat stress and heat stroke. Modification of street microclimates using tree canopy cover can provide important benefits to pedestrians, but how beneficial and under what circumstances is not clear. On sunny summer days, microclimatic measures were made in residential streets with low and high percentages of tree canopy cover in Melbourne, Australia.
View Article and Find Full Text PDFHabitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages.
View Article and Find Full Text PDFBiofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance.
View Article and Find Full Text PDFDisturbance associated with severe wildfires (WF) and WF simulating harvest operations can potentially alter soil methane (CH4 ) oxidation in well-aerated forest soils due to the effect on soil properties linked to diffusivity, methanotrophic activity or changes in methanotrophic bacterial community structure. However, changes in soil CH4 flux related to such disturbances are still rarely studied even though WF frequency is predicted to increase as a consequence of global climate change. We measured in-situ soil-atmosphere CH4 exchange along a wet sclerophyll eucalypt forest regeneration chronosequence in Tasmania, Australia, where the time since the last severe fire or harvesting disturbance ranged from 9 to >200 years.
View Article and Find Full Text PDFUrban ecosystems have traditionally been considered to be pervious features of our cities. Their hydrological properties have largely been investigated at the landscape scale and in comparison with other urban land use types. However, hydrological properties can vary at smaller scales depending upon changes in soil, surface litter and vegetation components.
View Article and Find Full Text PDFSeasonally dry ecosystems present a challenge to plants to maintain water relations. While native vegetation in seasonally dry ecosystems have evolved specific adaptations to the long dry season, there are risks to introduced exotic species. African mahogany, Khaya senegalensis Desr.
View Article and Find Full Text PDFBiosolids produced by wastewater treatment plants are often stored in stockpiles and can be a significant source of greenhouse gases (GHG). Growing trees in shallow stockpiled biosolids may remove nutrients, keep the biosolids drier and offset GHG emissions through C sequestration. We directly measured methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) flux from a large biosolid stockpile and two shallow stockpiles, one planted with Salix reichardtii (willow) trees, from December 2009 to January 2011.
View Article and Find Full Text PDFSavanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche.
View Article and Find Full Text PDFThe wastewater treatment process generates large amounts of sewage sludge that are dried and then often stored in biosolid stockpiles in treatment plants. Because the biosolids are rich in decomposable organic matter they could be a significant source for greenhouse gas (GHG) emissions, yet there are no direct measurements of GHG from stockpiles. We therefore measured the direct emissions of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) on a monthly basis from three different age classes of biosolid stockpiles at the Western Treatment Plant (WTP), Melbourne, Australia, from December 2009 to November 2011 using manual static chambers.
View Article and Find Full Text PDFNational and regional C emissions from historical land use change (LUC) and fossil fuel use are proposed as a basis to ascribe 'burden-sharing' for global emission reduction targets. Changes in non-CO2 greenhouse gas emissions as a result of LUC have not been considered, but may be considerable. We measured soil-atmosphere exchange of methane (CH4) and nitrous oxide (N2O) in remnant forest, pasture and viticulture systems in four seasons, as well as differences in soil C density and the C density of remnant forest vegetation.
View Article and Find Full Text PDFDesigned, green infrastructures are becoming a customary feature of the urban landscape. Sustainable technologies for stormwater management, and biofilters in particular, are increasingly used to reduce stormwater runoff volumes and peaks as well as improve the water quality of runoff discharged into urban water bodies. Although a lot of research has been devoted to these technologies, their effect in terms of greenhouse gas fluxes in urban areas has not been yet investigated.
View Article and Find Full Text PDFTermites are a highly uncertain component in the global source budgets of CH(4) and CO(2). Large seasonal variations in termite mound fluxes of CH(4) and CO(2) have been reported in tropical savannas but the reason for this is largely unknown. This paper investigated the processes that govern these seasonal variations in CH(4) and CO(2) fluxes from the mounds of Microcerotermes nervosus Hill (Termitidae), a common termite species in Australian tropical savannas.
View Article and Find Full Text PDFThis study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO(2)assimilation rates and stomatal conductances.
View Article and Find Full Text PDF