A coherent vibrational wavepacket is launched and manipulated in the symmetric stretch (a) mode of CBr, by impulsive stimulated Raman scattering (ISRS) from nonresonant 400 nm laser pump pulses with various peak intensities on the order of tens of 10 W/cm. Extreme ultraviolet (XUV) attosecond transient absorption spectroscopy (ATAS) records the wavepacket dynamics as temporal oscillations in XUV absorption energy at the bromine M 3d edges around 70 eV. The results are augmented by nuclear time-dependent Schrödinger equation simulations.
View Article and Find Full Text PDFFor many chemical reactions, it remains notoriously difficult to predict and experimentally determine the rates and branching ratios between different reaction channels. This is particularly the case for reactions involving short-lived intermediates, whose observation requires ultrafast methods. The UV photochemistry of bromoform (CHBr) is among the most intensely studied photoreactions.
View Article and Find Full Text PDFWe measure the light-driven response of a magnetic multilayer structure made of thin alternating layers of cobalt and platinum at the few-femtosecond timescale. Using attosecond magnetic circular dichroism, we observe how light rearranges the magnetic moment during and after excitation. The results reveal a sub-5 fs spike of magnetization in the platinum layer, which follows the shape of the driving pulse.
View Article and Find Full Text PDFX-ray Transient Absorption Spectroscopy (XTAS) is a powerful probe for ultrafast molecular dynamics. The evolution of XTAS signal is controlled by the shapes of potential energy surfaces of the associated core-excited states, which are difficult to directly measure. Here, we study the vibrational dynamics of Raman activated CCl with XTAS targeting the C 1s and Cl 2p electrons.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
We theoretically investigate the influence of diradical electron spin coupling on the time-resolved X-ray absorption spectra of the photochemical ring opening of furanone. We predict geometry-dependent carbon K-edge signals involving transitions from core orbitals to both singly and unoccupied molecular orbitals. The most obvious features of the ring opening come from the carbon atom directly involved in the bond breaking through its transition to both the newly formed singly occupied and the available lowest unoccupied molecular orbitals (SOMO and LUMO, respectively).
View Article and Find Full Text PDFAttosecond science requires a substantial rethinking of how to make measurements on very short timescales; how to acquire the necessary equipment, technology, and personnel; and how to build a set of laboratories for such experiments. This entails a rejuvenation of the author in many respects, in the laboratory itself, with regard to students and postdocs, and in generating funding for research. It also brings up questions of what it means to do attosecond science, and the discovery of the power of X-ray spectroscopy itself, which complements the short timescales addressed.
View Article and Find Full Text PDFThe UV photochemistry of small heteroaromatic molecules serves as a testbed for understanding fundamental photo-induced chemical transformations in moderately complex compounds, including isomerization, ring-opening, and molecular dissociation. Here, a combined experimental-theoretical study of 268 nm UV light-induced dynamics in 2-iodothiophene (C4H3IS) is performed. The dynamics are experimentally monitored with a femtosecond extreme ultraviolet (XUV) probe that measures iodine N-edge 4d core-to-valence transitions.
View Article and Find Full Text PDFUnderstanding the relaxation pathways of photoexcited molecules is essential to gain atomistic-level insight into photochemistry. We performed a time-resolved study of ultrafast molecular symmetry breaking through geometric relaxation (Jahn-Teller distortion) on the methane cation. Attosecond transient absorption spectroscopy with soft x-rays at the carbon K-edge revealed that the distortion occurred within 10 ± 2 femtoseconds after few-femtosecond strong-field ionization of methane.
View Article and Find Full Text PDFUltrafast nonlinear spectroscopy can unravel the dynamics of highly excited electronic states.
View Article and Find Full Text PDFTabletop X-ray spectroscopy measurements at the carbon -edge complemented by calculations are used to investigate the influence of the bromine atom on the carbon core-valence transitions in the bromobenzene cation (BrBz). The electronic ground state of the cation is prepared by resonance-enhanced two-photon ionization of neutral bromobenzene (BrBz) and probed by X-rays produced by high-harmonic generation (HHG). Replacing one of the hydrogen atoms in benzene with a bromine atom shifts the transition from the 1s orbital of the carbon atom (C*) bonded to bromine by ∼1 eV to higher energy in the X-ray spectrum compared to the other carbon atoms (C).
View Article and Find Full Text PDFIntersystem crossings between singlet and triplet states represent a crucial relaxation pathway in photochemical processes. Herein, we probe the intersystem crossing in hexafluoro-acetylacetone with ultrafast X-ray transient absorption spectroscopy at the carbon K-edge. We observe the excited state dynamics following excitation with 266 nm UV light to the ππ* (S) state with element and site-specificity using a broadband soft X-ray pulse produced by high harmonic generation.
View Article and Find Full Text PDFCoherence can drive wave-like motion of electrons and nuclei in photoexcited systems, which can yield fast and efficient ways to exert materials' functionalities beyond the thermodynamic limit. The search for coherent phenomena has been a central topic in chemical physics although their direct characterization is often elusive. Here, we highlight recent advances in time-resolved x-ray absorption spectroscopy (tr-XAS) to investigate coherent phenomena, especially those that utilize the eminent light source of isolated attosecond pulses.
View Article and Find Full Text PDFX-ray Transient Absorption Spectroscopy (XTAS) and theoretical calculations are used to study CCl prepared by 800 nm strong-field ionization. XTAS simultaneously probes atoms at the carbon K-edge (280-300 eV) and chlorine L-edge (195-220 eV). Comparison of experiment to X-ray spectra computed by orbital-optimized density functional theory (OO-DFT) indicates that after ionization, CCl undergoes symmetry breaking driven by Jahn-Teller distortion away from the initial tetrahedral structure (T) in 6 ± 2 fs.
View Article and Find Full Text PDFA crucial chain-branching step in autoignition is the decomposition of ketohydroperoxides (KHP) to form an oxy radical and OH. Other pathways compete with chain-branching, such as "Korcek" dissociation of γ-KHP to a carbonyl and an acid. Here we characterize the formation of a γ-KHP and its decomposition to formic acid+acetone products from observations of n-butane oxidation in two complementary experiments.
View Article and Find Full Text PDFThe detection of intermediate species and the correlation of their ultrafast dynamics with the morphology and electronic structure of a surface is crucial to fully understand and control heterogeneous photoinduced and photocatalytic reactions. In this work, the ultrafast photodissociation dynamics of CHBr molecules adsorbed on variable-size Au clusters on MgO/Mo(100) is investigated by monitoring the CH transient evolution using a pump-probe technique in conjunction with surface mass spectrometry. Furthermore, extreme-UV photoemission spectroscopy in combination with theoretical calculations is employed to study the electronic structure of the Au clusters on MgO/Mo(100).
View Article and Find Full Text PDFThe photodissociation dynamics of alkyl iodides along the C-I bond are captured by attosecond extreme-ultraviolet (XUV) transient absorption spectroscopy employing resonant ∼20 fs UV pump pulses. The methodology of previous experiments on CHI [Chang et al., J.
View Article and Find Full Text PDFAdvancements in x-ray free-electron lasers on producing ultrashort, ultrabright, and coherent x-ray pulses enable single-shot imaging of fragile nanostructures, such as superfluid helium droplets. This imaging technique gives unique access to the sizes and shapes of individual droplets. In the past, such droplet characteristics have only been indirectly inferred by ensemble averaging techniques.
View Article and Find Full Text PDFTo develop chemical kinetics models for the combustion of ionic liquid-based monopropellants, identification of the elementary steps in the thermal and catalytic decomposition of components such as 2-hydroxyethylhydrazinium nitrate (HEHN) is needed but is currently not well understood. The first decomposition step in protic ionic liquids such as HEHN is typically the proton transfer from the cation to the anion, resulting in the formation of 2-hydroxyethylhydrazine (HEH) and HNO. In the first part of this investigation, the high-temperature thermal decomposition of HEH is probed with flash pyrolysis (<1400 K) and vacuum ultraviolet (10.
View Article and Find Full Text PDFElectronic relaxation in organic chromophores often proceeds via states not directly accessible by photoexcitation. We report on the photoinduced dynamics of pyrazine that involves such states, excited by a 267 nm laser and probed with X-ray transient absorption spectroscopy in a table-top setup. In addition to the previously characterized B (ππ*) (S) and B (nπ*) (S) states, the participation of the optically dark A (nπ*) state is assigned by a combination of experimental X-ray core-to-valence spectroscopy, electronic structure calculations, nonadiabatic dynamics simulations, and X-ray spectral computations.
View Article and Find Full Text PDFExtreme ultraviolet (XUV) transient absorption spectroscopy has emerged as a sensitive tool for mapping the real-time structural and electronic evolution of molecules. Here, attosecond XUV transient absorption is used to track dynamics in the A-band of methyl iodide (CHI). Gaseous CHI molecules are excited to the A-band by a UV pump (277 nm, ∼20 fs) and probed by attosecond XUV pulses targeting iodine I(4d) core-to-valence transitions.
View Article and Find Full Text PDF