Adv Physiol Educ
September 2020
Access to knowledge has never been easier in the internet age, and so it is important that students develop skills to discriminate undependable information from reliably investigated research. We have created an exercise that teaches good research practice by exploring the history, ethics, and design of clinical trials. Students apply their understanding of these principles through an assessed systematic review and meta-analysis (SRMA) exercise.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
October 2018
Sprouty2 (Spry2) acts as a central regulator of tubular growth and branch patterning in the developing mammalian lung by controlling both magnitude and duration of growth factor signalling. To determine if this protein coordinates airway and vascular growth factor signalling, we tested the hypothesis that Spry2 links the primary cue for airway outgrowth, fibroblast growth factor-10 (FGF-10), to genomic events underpinning the expression and release of vascular endothelial growth factor-A (VEGF-A). Using primary fetal distal lung epithelial cells (FDLE) from rat, and immortalised human bronchial epithelial cells (16HBE14o-), we identified a nuclear sub-population of Spry2 which interacted with regions of the rat and human VEGF-A promoter spanning the hypoxia response element (HRE) and adjacent 3' sites.
View Article and Find Full Text PDFSerum and glucocorticoid-inducible kinase 1 (SGK1) is a protein kinase that contributes to the hormonal control of renal Na(+) retention by regulating the abundance of epithelial Na(+) channels (ENaC) at the apical surface of the principal cells of the cortical collecting duct (CCD). Although glucocorticoids and insulin stimulate Na(+) transport by activating SGK1, the responses follow different time courses suggesting that these hormones act by different mechanisms. We therefore explored the signaling pathways that allow dexamethasone and insulin to stimulate Na(+) transport in mouse CCD cells (mpkCCDcl4).
View Article and Find Full Text PDFBackground: Precision medicine aims to combat the variability of the therapeutic response to a given medicine by delivering the right medicine to the right patient. However, the application of precision medicine is predicated on a prior quantitation of the variance of the reference range of normality. Airway pathophysiology provides a good example due to a very variable first line of defence against airborne assault.
View Article and Find Full Text PDFSemin Cell Dev Biol
December 2014
The existence of a nutrient sensitive "autocatakinetic" regulator of embryonic tissue growth has been hypothesised since the early 20th century, beginning with pioneering work on the determinants of foetal size by the Australian physiologist, Thorburn Brailsford-Robertson. We now know that the mammalian target of rapamycin complexes (mTORC1 and 2) perform this essential function in all eukaryotic tissues by balancing nutrient and energy supply during the first stages of embryonic cleavage, the formation of embryonic stem cell layers and niches, the highly specified programmes of tissue growth during organogenesis and, at birth, paving the way for the first few breaths of life. This review provides a synopsis of the role of the mTOR complexes in each of these events, culminating in an analysis of lung branching morphogenesis as a way of demonstrating the central role mTOR in defining organ structural complexity.
View Article and Find Full Text PDFBirt-Hogg-Dubé (BHD) syndrome is an autosomal dominant disorder where patients are predisposed to kidney cancer, lung and kidney cysts and benign skin tumors. BHD is caused by heterozygous mutations affecting folliculin (FLCN), a conserved protein that is considered a tumor suppressor. Previous research has uncovered multiple roles for FLCN in cellular physiology, yet it remains unclear how these translate to BHD lesions.
View Article and Find Full Text PDFInt J Physiol Pathophysiol Pharmacol
October 2012
Background/aims: Chemokine signaling from airway epithelium regulates macrophage recruitment to the lung in inflammatory diseases such as asthma. This study investigates the mechanism by which the α-melanocyte stimulating hormone-derived tripeptide, KPV, and the agonist of the dominant melanocortin receptor in airway epithelium (MC3R), γ-melanocyte stimulating hormone (γ-MSH), suppress inflammation in immortalised human bronchial airway epithelium.
Methods: TNFα and rhino syncitial virus (RSV)-evoked nuclear factor-κB (NFκB) signaling was measured in immortalised human bronchial epithelial cells (16HBE14o-) in response to KPV and γMSH.
Background And Purpose: Glucocorticoids appear to control Na⁺ absorption in pulmonary epithelial cells via a mechanism dependent upon serum and glucocorticoid-inducible kinase 1 (SGK1), a kinase that allows control over the surface abundance of epithelial Na⁺ channel subunits (α-, β- and γ-ENaC). However, not all data support this model and the present study re-evaluates this hypothesis in order to clarify the mechanism that allows glucocorticoids to control ENaC activity.
Experimental Approach: Electrophysiological studies explored the effects of agents that suppress SGK1 activity upon glucocorticoid-induced ENaC activity in H441 human airway epithelial cells, whilst analyses of extracted proteins explored the associated changes to the activities of endogenous protein kinase substrates and the overall/surface expression of ENaC subunits.
Tuberous sclerosis complex (TSC) is a genetic condition characterized by the growth of benign tumours in multiple organs, including the brain and kidneys, alongside intellectual disability and seizures. Identification of a causative mutation in TSC1 or TSC2 is important for accurate genetic counselling in affected families, but it is not always clear from genetic data whether a sequence variant is pathogenic or not. In vitro functional analysis could provide support for determining whether an unclassified TSC1 or TSC2 variant is disease-causing.
View Article and Find Full Text PDFBackground: Mutation of the cystic fibrosis transmembrane-conductance regulator (CFTR) causes cystic fibrosis (CF) but not all CF aspects can easily be explained by deficient ion transport. CF-inflammation provides one example but its pathogenesis remains controversial. Here, we tested the simple but fundamental hypothesis that wild-type CFTR is needed to suppress NF-kappaB activity.
View Article and Find Full Text PDFTumors that form as a result of heightened mammalian target of rapamycin (mTOR) signaling are highly vascularized. This process of angiogenesis is regulated through hypoxia-inducible factor (HIF)-mediated transcription of angiogenic factors. It is recognized that inhibition of mTOR with rapamycin can diminish the process of angiogenesis.
View Article and Find Full Text PDFAntioxid Redox Signal
June 2005
Throughout gestation, low oxygen tensions are a dominant feature of the fetal environment and so may be important in sustaining a normal pattern of lung morphogenesis until the moment of birth. As breathing begins, the equilibration of the lung lumen to postnatal PO2 evokes a series of physiologic and morphogenic maturation events that are partially reversible by hypoxia. In this review, we discuss the experimental evidence that fetal and perinatal oxygen tensions differently influence lung morphogenesis through oxygen- and redox-responsive signaling pathways and identify five loci at which this regulation may occur: (I) proliferation of undifferentiated lung mesenchyme as governed by hypoxia-regulated transcription factors (HIF-1alpha, C/EBPbeta); (II) transient production of reactive oxygen species (ROS) and nuclear oxidation of the perinatal lung epithelium; (III) nuclear transport and oxidation of thioredoxin in hand with the acute activation of nuclear factor- kappaB (NF-kappaB); (IV) ROS-evoked chronic rise in intracellular glutathione and thioredoxin redox buffering capacity; and (V) NF-kappaB-dependent increase in transepithelial Na+ transport and lung lumenal fluid clearance.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
November 2004
Hochachka's "Hypoxia Defense Strategies" identify oxygen signalling, metabolic arrest, channel arrest and coordinated suppression of ATP turnover rates as key factors that determine the ability of organisms to survive exposure to chronic hypoxia. In this review, I assess the developmental role played by these phenomena in the morphogenesis of the gas exchange tissues that define the pathway for oxygen transport to cytochrome c oxidase. Key areas of regulation lie in: (I) the suppression of fetal mitochondrial oxidative function in hand with mitochondrial biogenesis (metabolic arrest), (II) the role of hypoxia-driven oxygen signalling pathways in directing the scope of non-differentiated stem cell proliferation in placenta and lung development and (III) the regulation of epithelial fluid secretion/absorption in the lung through the oxygen-dependent modulation of Na+ conductance pathways.
View Article and Find Full Text PDFOxygen-sensing pathways have been extensively explored in the context of homeostatic responses to hypoxic episodes; however, little is known of their involvement in the morphogenesis of respiratory structures (mitochondria, placenta, lung) during development in utero. This review identifies four essential loci where oxygen signalling pathways may cue the development of respiratory structures as: (i). mitochondrial biogenesis coupled with muted oxidative function dependent on the hypoxia-sustained production of NO; (ii).
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2003
In fetal pneumocytes, increasing P(O(2)) can raise apical Na(+) conductance (G(Na(+))) and increase the abundance of epithelial Na(+) channel subunit (alpha-, beta-, and gamma-ENaC) mRNA, suggesting that the rise in G(Na(+)), which may be important to the perinatal maturation of the lung, reflects O(2)-evoked ENaC gene expression. However, we now show that physiologically relevant increases in P(O(2)) do not affect alpha-, beta-, and gamma-ENaC mRNA abundance in pneumocytes maintained (approximately 48 h) in hormone-free medium or in medium supplemented with dexamethasone and tri-iodothyronine, although the response does persist in cells maintained in medium containing a complex mixture of hormones/growth factors. However, parallel electrometric studies revealed clear increases in G(Na(+)) under all tested conditions and so it is now clear that O(2)-evoked increases in G(Na(+)) can occur without corresponding increases in ENaC mRNA abundance.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
March 2004
Chorioamnionitis is associated with increased risks of perinatal respiratory failure; however, components of the inflammatory acute-phase response are known to actively promote lung maturation. To manipulate this relationship, we examined the effect of the thymic immunomodulator thymulin on fetal lung mesenchyme-epithelial differentiation during exposure to Escherichia coli lipopolysaccharide (LPS). Gestation day 14 fetal rat lung explants were cultured for 96 h at fetal (23 mmHg) or ambient (142 mmHg) Po(2).
View Article and Find Full Text PDFThe regulation of cytokine gene transcription and biosynthesis involves the reduction-oxidation (redox)-sensitive nuclear factor-kappaB (NF-kappaB), whose activation is mediated by an upstream kinase that regulates the phosphorylation of inhibitory-kappaB (IkappaB). It was hypothesized that lipopolysaccharide (LPS)-induced biosynthesis of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in vitro is regulated by redox equilibrium. In alveolar epithelial cells, we investigated the role of L-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of gamma-glutamylcysteine synthetase, the rate-limiting enzyme in GSH biosynthesis, 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU), which inhibits glutathione oxidized disulfide reductase, pyrrolidine dithiocarbamate (PDTC), an antioxidant/prooxidant thiuram, and N-acetyl-L-cysteine (NAC), an antioxidant and GSH precursor, in regulating LPS-induced cytokine biosynthesis and IkappaB-alpha/NF-kappaB signaling.
View Article and Find Full Text PDFIn this report we investigated the immunopharmacological role of selective and nonselective phosphodiesterase (PDE) inhibition in regulating the inhibitory-kappaB (IkappaB-alpha)/nuclear factor-kappaB (NF-kappaB) signaling transduction pathway. In fetal alveolar type II epithelial cells, PDE blockade at the level of the diverging cAMP/cGMP pathways differentially regulated the phosphorylation and degradation of IkappaB-alpha, the major cytosolic inhibitor of NF-kappaB. Whereas selective inhibition of PDEs 1, 3, and 4, by the action of 8-methoxymethyl-3-isobutyl-1-methylxanthine, amrinone, and rolipram, respectively, exhibited a tendency to augment the translocation of NF-kappaB(1) (p50), RelA (p65), RelB (p68), and c-Rel (p75), selective blockade of PDE 5, 6, and 9, by the action of 4-[[3',4'-(methylenedioxy)benzyl]amino]-6-methoxyquinazoline and zaprinast, attenuated lipopolysaccharide-endotoxin (LPS)-mediated NF-kappaB translocation.
View Article and Find Full Text PDFIn an attempt to elaborate in vitro on a therapeutic strategy that counteracts an inflammatory signal, we previously reported a novel immunopharmacological potential of glutathione, an antioxidant thiol, in regulating inflammatory cytokines. In the present study, we investigated the hypothesis that selective regulation of phosphodiesterases (PDEs), a family of enzymes that controls intracellular cAMP/cGMP degradation, differentially regulates proinflammatory cytokines. Selective PDE1 inhibition (8-methoxymethyl-3-isobutyl-1-methylxanthine) blockaded lipopolysaccharide-endotoxin (LPS)-mediated biosynthesis of interleukin (IL)-6, but this pathway had no inhibitory effect on tumor necrosis factor-alpha (TNF-alpha).
View Article and Find Full Text PDFIt has been previously reported that amiloride suppresses inflammatory cytokine biosynthesis. However, the molecular mechanism involved has yet to be ascertained. Therefore, the immunoregulatory potential mediated by amiloride and the underlying signaling transduction pathway was investigated.
View Article and Find Full Text PDF