Continuous deep brain stimulation (cDBS) of the subthalamic nucleus (STN) or globus pallidus is an effective treatment for the motor symptoms of Parkinson's disease. The relative benefit of one region over the other is of great interest but cannot usually be compared in the same patient. Simultaneous DBS of both regions may synergistically increase the therapeutic benefit.
View Article and Find Full Text PDFBackground: Traditional deep brain stimulation (DBS) at fixed regular frequencies (>100 Hz) is effective in treating motor symptoms of Parkinson's disease (PD). Temporally non-regular patterns of DBS are a new parameter space that may help increase efficacy and efficiency.
Objective: To compare the effects of temporally non-regular patterns of DBS to traditional regularly-spaced pulses.
Annu Int Conf IEEE Eng Med Biol Soc
July 2022
Sensing technology, as well as cloud communication, is enabling the development of closed-loop deep brain stimulation (DBS) for Parkinson's disease. The accelerometer is a practical sensor that can provide information about the disease/health state of the patient as well as physical activity levels, all of which in the long-term can provide feedback information to an adaptive closed-loop control algorithm for more effective and personalized DBS therapy. In this paper, we present for the first time, acceleration streamed from Medtronic's RC+S device in patients with Parkinson's disease while at home, and compare it to accel-eration acquired concurrently from the patient's Apple Watch.
View Article and Find Full Text PDFBackground And Objectives: The goal of this review is to describe the general features, mechanisms, technical recording factors, and clinical applications of brain evoked potentials (EPs) generated by deep brain stimulation (DBS) for Parkinson's disease (PD).
Results: Evoked potentials in response to DBS pulses occur on the timescale of milliseconds and are found both locally at the site of stimulation and remotely in the cortex. DBS evoked potentials arise from a complex integration of antidromic and orthodromic conduction pathway responses, and provide information valuable for understanding the mechanisms and circuits involved in symptom treatment.
Background: Deep brain stimulation (DBS) is an effective therapy in advanced Parkinson disease (PD). Although both subthalamic nucleus (STN) and globus pallidus (GP) DBS show equivalent efficacy in PD, combined stimulation may demonstrate synergism.
Objective: To evaluate the clinical benefit of stimulating a combination of STN and GP DBS leads and to demonstrate biomarker discovery for adaptive DBS therapy in an observational study.
Background: Deep brain stimulation (DBS) is an effective therapy for reducing the motor symptoms of Parkinson's disease, but the mechanisms of action of DBS and neural correlates of symptoms remain unknown.
Objective: To use the neural response to DBS to reveal connectivity of neural circuits and interactions between groups of neurons as potential mechanisms for DBS.
Methods: We recorded activity evoked by DBS of the subthalamic nucleus (STN) in humans with Parkinson's disease.
Background: Neural oscillations represent synchronous neuronal activation and are ubiquitous throughout the brain. Oscillatory activity often includes brief high-amplitude bursts in addition to background oscillations, and burst activity may predict performance on working memory, motor, and comprehension tasks.
Objective: We evaluated beta burst activity as a possible biomarker for motor symptoms in Parkinson's disease (PD).
Low-field magnetic stimulation (LFMS) is a gated high-frequency non-invasive brain stimulation method (500 Hz gated at 2 Hz) with a proposed antidepressant effect. However, it has remained unknown how such stimulation paradigms modulate neuronal network activity and how the induced changes depend on network state. Here we examined the immediate and outlasting effects of the gated high-frequency electric field associated with LFMS on the cortical activity as a function of neuromodulatory tone that defines network state.
View Article and Find Full Text PDFCortical oscillations modulate cellular excitability and facilitate neuronal communication and information processing. Layer 5 pyramidal cells (L5 PYs) drive low-frequency oscillations (<4 Hz) in neocortical networks in vivo. In vitro, individual L5 PYs exhibit subthreshold resonance in the theta band (4-8 Hz).
View Article and Find Full Text PDFCortical oscillations play a fundamental role in organizing large-scale functional brain networks. Noninvasive brain stimulation with temporally patterned waveforms such as repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) have been proposed to modulate these oscillations. Thus, these stimulation modalities represent promising new approaches for the treatment of psychiatric illnesses in which these oscillations are impaired.
View Article and Find Full Text PDFEpilepsies are debilitating neurological disorders characterized by repeated episodes of pathological seizure activity. Absence epilepsy (AE) is a poorly understood type of seizure with an estimated 30% of affected patients failing to respond to antiepileptic drugs. Thus, novel therapies are needed for the treatment of AE.
View Article and Find Full Text PDFTranscranial current stimulation (TCS) is a promising method of non-invasive brain stimulation to modulate cortical network dynamics. Preliminary studies have demonstrated the ability of TCS to enhance cognition and reduce symptoms in both neurological and psychiatric illnesses. Despite the encouraging results of these studies, the mechanisms by which TCS and endogenous network dynamics interact remain poorly understood.
View Article and Find Full Text PDFCholinergic and noradrenergic neuromodulation play a key role in determining overall behavioral state by shaping the underlying cortical network dynamics. The effects of these systems on synaptic and intrinsic cellular targets are quite diverse and a comprehensive understanding of how these neuromodulators regulate (spontaneous) cortical network activity has remained elusive. Here, we used multielectrode electrophysiology in vitro to investigate the effect of these neuromodulators on spontaneous network dynamics in acute slices of mouse visual cortex.
View Article and Find Full Text PDF