The remarkable efficiency with which enzymes catalyze small-molecule reactions has driven their widespread application in organic chemistry. Here, we employ automated fast-flow solid-phase synthesis to access catalytically active full-length enzymes without restrictions on the number and structure of noncanonical amino acids incorporated. We demonstrate the total syntheses of iron-dependent myoglobin (BsMb) and sperm whale myoglobin (SwMb).
View Article and Find Full Text PDFThe mechanism of Pd-catalyzed amination of five-membered heteroaryl halides was investigated by integrating experimental kinetic analysis with kinetic modeling through predictive testing and likelihood ratio analysis, revealing an atypical productive coupling pathway and multiple off-cycle events. The GPhos-supported Pd catalyst, along with the moderate-strength base NaOTMS, was previously found to promote efficient coupling between five-membered heteroaryl halides and secondary amines. However, slight deviations from the optimal concentration, temperature, and/or solvent resulted in significantly lower yields, contrary to typical reaction optimization trends.
View Article and Find Full Text PDFDespite the prevalence of N-heteroarenes in small-molecule pharmaceuticals, Pd-catalyzed C-N cross-coupling reactions of aryl halides and amines containing these rings remain challenging due to their ability to displace the supporting ligand via coordination to the metal center. To address this limitation, we report the development of a highly robust Pd catalyst supported by a new dialkylbiarylphosphine ligand, FPhos. The FPhos-supported catalyst effectively resists N-heteroarene-mediated catalyst deactivation to readily promote C-N coupling between a wide variety of Lewis-basic aryl halides and secondary amines, including densely functionalized pharmaceuticals.
View Article and Find Full Text PDFWe report a mild method for the copper-catalyzed amination of aryl chlorides. Key to the success of the method was the use of highly sterically encumbered ,-diaryl diamine ligands which resist catalyst deactivation, allowing reactions to proceed at significantly lower temperatures and with a broader scope than current protocols. A sequence of highly chemoselective C-N and C-O cross-coupling reactions were demonstrated, and mechanistic studies indicate that oxidative addition of the Cu catalyst to the aryl chlorides is rate-limiting.
View Article and Find Full Text PDFThe utility of antibody therapeutics is hampered by potential cross-reactivity with healthy tissue. Over the past decade, significant advances have been made in the design of activatable antibodies, which increase, or create altogether, the therapeutic window of a parent antibody. Of these, antibody prodrugs (pro-antibodies) are masked antibodies that have advanced the most for therapeutic use.
View Article and Find Full Text PDFWe report a general and functional-group-tolerant method for the Cu-catalyzed amination of base-sensitive aryl bromides including substrates possessing acidic functional groups and small five-membered heteroarenes. The results presented herein substantially expand the scope of Cu-catalyzed C-N coupling reactions. The combination of , an anionic ,-diarylbenzene-1,2-diamine ligand, along with the mild base NaOTMS leads to the formation of a stable yet reactive catalyst that resists deactivation from coordination to heterocycles or charged intermediates.
View Article and Find Full Text PDFA highly enantioselective formal hydroformylation of vinyl arenes enabled by copper hydride (CuH) catalysis is reported. Key to the success of the method was the use of the mild Lewis acid zinc triflate to promote the formation of oxocarbenium electrophiles through the activation of diethoxymethyl acetate. Using the newly developed protocol, a broad range of vinyl arene substrates underwent efficient hydroacetalization reactions to provide access to highly enantioenriched α-aryl acetal products in good yields with exclusively branched regioselectivity.
View Article and Find Full Text PDFWe disclose the development of a Cu-catalyzed C-O coupling method utilizing a new N,N-diarylbenzene-1,2-diamine ligand, L8. Under optimized reaction conditions, structurally diverse aryl and heteroaryl bromides underwent efficient coupling with a variety of alcohols at room temperature using an L8-based catalyst. Notably, the L8-derived catalyst exhibited enhanced activity when compared to the L4-based system previously disclosed for C-N coupling, namely the ability to functionalize aryl bromides containing acidic functional groups.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) are intriguing targets in drug discovery and development. Peptides are well suited to target PPIs, which typically present with large surface areas lacking distinct features and deep binding pockets. To improve binding interactions with these topologies and advance the development of PPI-focused therapeutics, potential ligands can be equipped with electrophilic groups to enable binding through covalent mechanisms of action.
View Article and Find Full Text PDFAlkenes are ubiquitous in organic chemistry, yet many classes of alkenes remain challenging to access by current synthetic methodology. Herein, we report a copper hydride-catalyzed approach for the synthesis of -configured trisubstituted alkenes with high stereo- and regioselectivity via alkyne hydroalkylation. A DTBM-dppf-supported Cu catalyst was found to be optimal, providing a substantial increase in product yield compared to reactions conducted with dppf as the ligand.
View Article and Find Full Text PDFUllmann-type C-N coupling reactions represent an important alternative to well-established Pd-catalyzed approaches due to the differing reactivity and the lower cost of Cu. While the design of anionic Cu ligands, particularly those by Ma, has enabled the coupling of various classes of aryl halides and alkyl amines, most methods require conditions that can limit their utility on complex substrates. Herein, we disclose the development of anionic ,-diarylbenzene-1,2-diamine ligands that promote the Cu-catalyzed amination of aryl bromides under mild conditions.
View Article and Find Full Text PDFEncoding small-molecule information in DNA has been leveraged to accelerate the discovery of ligands for therapeutic targets such as proteins. However, oligonucleotide-based encoding is hampered by inherent limitations of information stability and density. In this study, we establish abiotic peptides for next-generation information storage and apply them for the encoding of diverse small-molecule synthesis.
View Article and Find Full Text PDFPd-catalyzed nucleophilic fluorination reactions are important methods for the synthesis of fluoroarenes and fluoroalkenes. However, these reactions can generate a mixture of regioisomeric products that are often difficult to separate. While investigating the Pd-catalyzed fluorination of cyclic vinyl triflates, we observed that the addition of a substoichiometric quantity of TESCF significantly improved the regioselectivity of the reaction.
View Article and Find Full Text PDFWe report a versatile and functional-group-tolerant method for the Pd-catalyzed C-N cross-coupling of five-membered heteroaryl halides with primary and secondary amines, an important but underexplored transformation. Coupling reactions of challenging, pharmaceutically relevant heteroarenes, such as 2--1,3-azoles, are reported in good-to-excellent yields. High-yielding coupling reactions of a wide set of five-membered heteroaryl halides with sterically demanding α-branched cyclic amines and acyclic secondary amines are reported for the first time.
View Article and Find Full Text PDFThe synthesis of palladium oxidative addition complexes derived from unprotected peptides is described. Incorporation of 4-halophenylalanine into a peptide during solid phase peptide synthesis allows for subsequent oxidative addition at this position upon treatment with a palladium precursor and suitable ligand. The resulting palladium-peptide complexes are solid, storable, water-soluble, and easily purified high-performance liquid chromatography.
View Article and Find Full Text PDFα-Stereogenic allyl metalloids are versatile synthetic intermediates which can undergo various stereocontrolled transformations. Most existing methods to prepare α-stereogenic allyl metalloids involve multi-step sequences that curtail the number of compatible substrates and are limited to the synthesis of boronates. Here, we report a general method for the enantioselective preparation of α-stereogenic allyl metalloids utilizing dual CuH- and Pd-catalysis.
View Article and Find Full Text PDFThe enantioselective installation of a methyl group onto a small molecule can result in the significant modification of its biological properties. While hydroalkylation of olefins represents an attractive approach to introduce alkyl substituents, asymmetric hydromethylation protocols are often hampered by the incompatibility of highly reactive methylating reagents and a lack of general applicability. Herein, we report an asymmetric olefin hydromethylation protocol enabled by CuH catalysis.
View Article and Find Full Text PDFCatalyst transfer polymerization (CTP) is widely applied to the synthesis of well-defined π-conjugated polymers. Unlike other polymerization reactions that can be performed in water (e.g.
View Article and Find Full Text PDFThe asymmetric hydroaminocarbonylation of olefins represents a straightforward approach for the synthesis of enantioenriched amides, but is hampered by the necessity to employ CO gas, often at elevated pressures. We herein describe, as an alternative, an enantioselective hydrocarbamoylation of alkenes leveraging dual copper hydride and palladium catalysis to enable the use of readily available carbamoyl chlorides as a practical carbamoylating reagent. The protocol is applicable to various types of olefins, including alkenyl arenes, terminal alkenes, and 1,1-disubstituted alkenes.
View Article and Find Full Text PDFCarboranes represent a class of compounds with increasing therapeutic potential. However, few general approaches to readily embed carboranes into small molecules, peptides, and proteins are available. We report a strategy based on palladium-mediated C-X (X = C, S, and N) bond formation for the installation of carborane-containing moieties onto small molecules and peptides.
View Article and Find Full Text PDFThe selective reductive coupling of vinyl heteroarenes with aldehydes and ketones represents a versatile approach for the rapid construction of enantiomerically enriched secondary and tertiary alcohols, respectively. Herein, we demonstrate a CuH-catalyzed regiodivergent coupling of vinyl heteroarenes with carbonyl-containing electrophiles, in which the selectivity is controlled by the ancillary ligand. This approach leverages an generated benzyl- or dearomatized allyl-Cu intermediate, yielding either the dearomatized or exocyclic addition products, respectively.
View Article and Find Full Text PDFConjugated dienes are versatile building blocks and prevalent substructures in synthetic chemistry. Herein, we report a method for the stereoselective hydroalkenylation of alkynes, utilizing readily available enol triflates. We leveraged an -generated and geometrically pure vinyl-Cu(I) species to form the ,- or ,-1,3-dienes in excellent stereoselectivity and yield.
View Article and Find Full Text PDFThe utilization of isolated Palladium Oxidative Addition Complexes (OACs) has had a significant impact on Pd-catalyzed and Pd-mediated cross-coupling reactions. Despite their importance, widespread utility of OACs has been limited by the instability of their precursor complexes. Herein, we report the use of Cámpora's palladacycle as a new, more stable precursor to Pd OACs.
View Article and Find Full Text PDF