Publications by authors named "Stephen Kron"

Cellular senescence has been increasingly recognized as a hallmark of cancer, reflecting its association with aging and inflammation, its role as a response to deregulated proliferation and oncogenic stress, and its induction by cancer therapies. While therapy-induced senescence (TIS) has been linked to resistance, recurrence, metastasis, and normal tissue toxicity, TIS also has the potential to enhance therapy response and stimulate anti-tumor immunity. In this review, we examine the Jekyll and Hyde nature of senescent cells (SnCs), focusing on how their persistence while expressing the senescence-associated secretory phenotype (SASP) modulates the tumor microenvironment through autocrine and paracrine mechanisms.

View Article and Find Full Text PDF

Autophagy is known to suppress tumor initiation by removing genotoxic stresses in normal cells. Conversely, autophagy is also known to support tumor progression by alleviating metabolic stresses in neoplastic cells. Centered on this pro-tumor role of autophagy, there have been many clinical trials to treat cancers through systemic blocking of autophagy.

View Article and Find Full Text PDF

CUX1 is a homeodomain-containing transcription factor that is essential for the development and differentiation of multiple tissues. CUX1 is recurrently mutated or deleted in cancer, particularly in myeloid malignancies. However, the mechanism by which CUX1 regulates gene expression and differentiation remains poorly understood, creating a barrier to understanding the tumor-suppressive functions of CUX1.

View Article and Find Full Text PDF

Therapy-induced senescence (TIS) may contribute to therapy resistance; however, evidence also suggests that senescent cells (SnCs) may promote anti-tumor immunity. Here, we present a protocol for examining the capability of TIS to stimulate type 1 conventional CD103 dendritic cells (DCs). We describe steps for isolating and differentiating CD103 DCs from murine bone marrow, inducing senescence in murine colon carcinoma cell line CT26, and coculturing DCs with SnCs.

View Article and Find Full Text PDF

Statins, a class of HMG-CoA reductase inhibitors best known for their cholesterol-reducing and cardiovascular protective activity, have also demonstrated promise in cancer prevention and treatment. This review focuses on their potential applications in head and neck cancer (HNC), a common malignancy for which established treatment often fails despite incurring debilitating adverse effects. Preclinical and clinical studies have suggested that statins may enhance HNC sensitivity to radiation and other conventional therapies while protecting normal tissue, but the underlying mechanisms remain poorly defined, likely involving both cholesterol-dependent and -independent effects on diverse cancer-related pathways.

View Article and Find Full Text PDF

Kidney stones (KSs) are very common, excruciating, and associated with tremendous healthcare cost, chronic kidney disease (CKD), and kidney failure (KF). Most KSs are composed of calcium oxalate and small increases in urinary oxalate concentration significantly enhance the stone risk. Oxalate also potentially contributes to CKD progression, kidney disease-associated cardiovascular diseases, and poor renal allograft survival.

View Article and Find Full Text PDF

Background: Immune tolerance contributes to resistance to conventional cancer therapies such as radiation. Radiotherapy induces immunogenic cell death, releasing a burst of tumor antigens, but this appears insufficient to stimulate an effective antitumor immune response. Radiation also increases infiltration of cytotoxic T lymphocytes (CTLs), but their effector function is short lived.

View Article and Find Full Text PDF

Sorting transmembrane cargo is essential for tissue development and homeostasis. However, mechanisms of intracellular trafficking in stratified epidermis are poorly understood. Here, we identify an interaction between the retromer endosomal trafficking component, VPS35, and the desmosomal cadherin, desmoglein-1 (Dsg1).

View Article and Find Full Text PDF

Beyond synthesizing telomere repeats, the telomerase reverse transcriptase (TERT) also serves multiple other roles supporting cancer growth. Blocking telomerase to drive telomere erosion appears impractical, but TERT's non-canonical activities have yet to be fully explored as cancer targets. Here, we used an irreversible TERT inhibitor, NU-1, to examine impacts on resistance to conventional cancer therapies.

View Article and Find Full Text PDF

Cellular senescence is a state of proliferative arrest induced by biological damage that normally accrues over years in aging cells but may also emerge rapidly in tumor cells as a response to damage induced by various cancer treatments. Tumor cell senescence is generally considered undesirable, as senescent cells become resistant to death and block tumor remission while exacerbating tumor malignancy and treatment resistance. Therefore, the identification of senescent tumor cells is of ongoing interest to the cancer research community.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers conducted experiments on MEN1-deficient PanNET cells, revealing they have impaired DNA double-strand break repair due to issues with homologous recombination and lower BRCA2 expression.
  • * The study suggests that using PARP inhibitors alongside radiation therapy could improve treatment outcomes for patients with MEN1 mutations in their PanNETs.
View Article and Find Full Text PDF

The genome of a living cell is continuously damaged by various exogenous and endogenous factors yielding multiple types of DNA damage including base damage and damage to the sugar-phosphate backbone of DNA. Double Strand Breaks (DSBs) are the most severe form of DNA damage and if left unchecked, may precipitate genomic rearrangements, cell death or contribute to malignancy. In clinical contexts, radiation is often used to induce DSBs as a form of genotoxic therapy.

View Article and Find Full Text PDF

CUX1, encoding a homeodomain-containing transcription factor, is recurrently deleted or mutated in multiple tumor types. In myeloid neoplasms, CUX1 deletion or mutation carries a poor prognosis. We have previously established that CUX1 functions as a tumor suppressor in hematopoietic cells across multiple organisms.

View Article and Find Full Text PDF

Polyphosphate (polyP) is a polymer of hundreds of phosphate residues present in all organisms. In mammals, polyP is involved in crucial physiological processes, including coagulation, inflammation, and stress response. However, after decades of research, the metabolic enzymes are still unknown.

View Article and Find Full Text PDF

The plant pathogen Pseudomonas syringae secretes multiple effectors that modulate plant defenses. Some effectors trigger defenses due to specific recognition by plant immune complexes, whereas others can suppress the resulting immune responses. The HopZ3 effector of P.

View Article and Find Full Text PDF

Therapy-related myeloid neoplasms (t-MNs) are high-risk late effects with poorly understood pathogenesis in cancer survivors. It has been postulated that, in some cases, hematopoietic stem and progenitor cells (HSPCs) harboring mutations are selected for by cytotoxic exposures and transform. Here, we evaluate this model in the context of deficiency of CUX1, a transcription factor encoded on chromosome 7q and deleted in half of t-MN cases.

View Article and Find Full Text PDF

The UltraPlex method for multiplexed two-dimensional fluorescent immunohistochemistry is described, in which hapten tags conjugated to primary antibodies facilitate multiplexed imaging of four or more antigens per tissue section at once. Anti-hapten secondary antibodies labeled with fluorophores provide amplified signal for detection, which is accomplished using a standard fluorescent microscope or digital slide scanner. The protocol is rapid and straightforward and utilizes conventionally prepared tissue samples.

View Article and Find Full Text PDF

Multiplexed tissue tomography enables comprehensive spatial analysis of markers within a whole tissue or thick tissue section. Clearing agents are often used to make tissue transparent and facilitate deep tissue imaging. Many methods of clearing and tissue tomography are currently used in a variety of tissue types.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P), a bioactive lipid mediator, is generated from sphingosine by sphingosine kinases (SPHKs) 1 and 2 and is metabolized to ∆2-hexadecenal (∆2-HDE) and ethanolamine phosphate by S1P lyase (S1PL) in mammalian cells. We have recently demonstrated the activation of nuclear SPHK2 and the generation of S1P in the nucleus of lung epithelial cells exposed to Pseudomonas aeruginosa. Here, we have investigated the nuclear localization of S1PL and the role of ∆2-HDE generated from S1P in the nucleus as a modulator of histone deacetylase (HDAC) activity and histone acetylation.

View Article and Find Full Text PDF

Cellular senescence is an essential tumor suppressive mechanism that prevents the propagation of oncogenically activated, genetically unstable, and/or damaged cells. Induction of tumor cell senescence is also one of the underlying mechanisms by which cancer therapies exert antitumor activity. However, an increasing body of evidence from preclinical studies demonstrates that radiation and chemotherapy cause accumulation of senescent cells (SnCs) both in tumor and normal tissue.

View Article and Find Full Text PDF

Topoisomerase 1 (Top1) reversibly nicks chromosomal DNA to relax strain accumulated during transcription, replication, chromatin assembly, and chromosome condensation. The Top1 poison camptothecin targets cancer cells by trapping the enzyme in the covalent complex Top1, tethered to cleaved DNA by a tyrosine-3'-phosphate bond. In vitro mechanistic studies point to interfacial inhibition, where camptothecin binding to the Top1-DNA interface stabilizes Top1.

View Article and Find Full Text PDF

Cells exposed to heat shock induce a conserved gene expression program, the heat shock response (HSR), encoding protein homeostasis (proteostasis) factors. Heat shock also triggers proteostasis factors to form subcellular quality control bodies, but the relationship between these spatial structures and the HSR is unclear. Here we show that localization of the J-protein Sis1, a cofactor for the chaperone Hsp70, controls HSR activation in yeast.

View Article and Find Full Text PDF

For decades genotoxic therapy has been a mainstay in the treatment of cancer, based on the understanding that the deregulated growth and genomic instability that drive malignancy also confer a shared vulnerability. Although chemotherapy and radiation can be curative, only a fraction of patients benefit, while nearly all are subjected to the harmful side-effects. Drug repurposing, defined here as retooling existing drugs and compounds as chemo or radiosensitizers, offers an attractive route to identifying otherwise non-toxic agents that can potentiate the benefits of genotoxic cancer therapy to enhance the therapeutic ratio.

View Article and Find Full Text PDF

Telomerase is a ribonuceloprotein complex responsible for maintaining telomeres and protecting chromosomal integrity. The human telomerase reverse transcriptase (hTERT) is expressed in ∼90% of cancer cells where it confers the capacity for limitless proliferation. Along with its established role in telomere lengthening, telomerase also serves noncanonical extra-telomeric roles in oncogenic signaling, resistance to apoptosis, and enhanced DNA damage response.

View Article and Find Full Text PDF