Background: A major hurdle to effectively treating glioblastoma (GBM) patients is the lack of longitudinal information about tumor progression, evolution, and treatment response.
Methods: In this study, we report the use of a neural tract-inspired conduit containing aligned polymeric nanofibers (i.e.
Identification of immunogenic cancer neoantigens as targets for therapy is challenging. Here, we integrate the whole-genome and long-read transcript sequencing of cancers to identify the collection of neo-open reading frame peptides (NOP) expressed in tumors. We termed this collection of NOPs the tumor framome.
View Article and Find Full Text PDFStimulating the innate immune system has been explored as a therapeutic option for the treatment of gliomas. Inactivating mutations in ATRX, defining molecular alterations in IDH-mutant astrocytomas, have been implicated in dysfunctional immune signaling. However, little is known about the interplay between ATRX loss and IDH mutation on innate immunity.
View Article and Find Full Text PDFBrain tumor-initiating cells (BTICs) and tumor cell plasticity promote glioblastoma (GBM) progression. Here, we demonstrate that clemastine, an over-the-counter drug for treating hay fever and allergy symptoms, effectively attenuated the stemness and suppressed the propagation of primary BTIC cultures bearing amplification. These effects on BTICs were accompanied by altered gene expression profiling indicative of their more differentiated states, resonating with the activity of clemastine in promoting the differentiation of normal oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes.
View Article and Find Full Text PDFStimulating the innate immune system has been explored as a therapeutic option for the treatment of gliomas. Inactivating mutations in , defining molecular alterations in -mutant astrocytomas, have been implicated in dysfunctional immune signaling. However, little is known about the interplay between ATRX loss and mutation on innate immunity.
View Article and Find Full Text PDFBackground: Telomere maintenance mechanisms are required to enable the replicative immortality of malignant cells. While most cancers activate the enzyme telomerase, a subset of cancers uses telomerase-independent mechanisms termed alternative lengthening of telomeres (ALT). ALT occurs via homology-directed-repair mechanisms and is frequently associated with ATRX mutations.
View Article and Find Full Text PDFBackground: While major advances have been made in improving the quality of life and survival of children with most forms of medulloblastoma (MB), those with MYC-driven tumors (Grp3-MB) still suffer significant morbidity and mortality. There is an urgent need to explore multimodal therapeutic regimens which are effective and safe for children. Large-scale studies have revealed abnormal cancer epigenomes caused by mutations and structural alterations of chromatin modifiers, aberrant DNA methylation, and histone modification signatures.
View Article and Find Full Text PDFGlioblastoma (GBM) is a fatal human brain tumor with a low survival rate. Temozolomide (TMZ) has been widely used in GBM therapy with noticeable side effects. Cold plasma is an ionized gas that is generated near room temperature.
View Article and Find Full Text PDFPurpose: To investigate the antitumor activity of a mitochondrial-localized HSP90 inhibitor, Gamitrinib, in multiple glioma models, and to elucidate the antitumor mechanisms of Gamitrinib in gliomas.
Experimental Design: A broad panel of primary and temozolomide (TMZ)-resistant human glioma cell lines were screened by cell viability assays, flow cytometry, and crystal violet assays to investigate the therapeutic efficacy of Gamitrinib. Seahorse assays were used to measure the mitochondrial respiration of glioma cells.
Purpose: To investigate the therapeutic role of a novel telomere-directed inhibitor, 6-thio-2'-deoxyguanosine (THIO) in gliomas both and .
Experimental Design: A panel of human and mouse glioma cell lines was used to test therapeutic efficacy of THIO using cell viability assays, flow cytometric analyses, and immunofluorescence. Integrated analyses of RNA sequencing and reverse-phase protein array data revealed the potential antitumor mechanisms of THIO.
Homozygous deletion of methylthioadenosine phosphorylase () is one of the most frequent genetic alterations in glioblastoma (GBM), but its pathologic consequences remain unclear. In this study, we report that loss of MTAP results in profound epigenetic reprogramming characterized by hypomethylation of /CD133-associated stem cell regulatory pathways. MTAP deficiency promotes glioma stem-like cell (GSC) formation with increased expression of /CD133 and enhanced tumorigenicity of GBM cells and is associated with poor prognosis in patients with GBM.
View Article and Find Full Text PDFStandard treatment, unfortunately, yields a poor prognosis for patients with primary or metastatic cancers in the central nervous system, indicating a necessity for novel therapeutic agents. Immunotoxins (ITs) are a class of promising therapeutic candidates produced by fusing antibody fragments with toxin moieties. In this study, we investigated if inherent resistance to IT cytotoxicity can be overcome by rational combination with pro-apoptotic enhancers.
View Article and Find Full Text PDFIntroduction: Pleomorphic xanthoastrocytoma (PXA) is a rare Grade II and III glioma. Surgical resection is the mainstay of treatment, however, adjuvant therapy is sometimes necessary. Given the rarity of PXA, chemotherapeutic efficacy data is limited.
View Article and Find Full Text PDFConventional therapy for malignant glioma fails to specifically target tumor cells. In contrast, substantial evidence indicates that if appropriately redirected, T cells can precisely eradicate tumors. Here we report the rational development of a fully human bispecific antibody (hEGFRvIII-CD3 bi-scFv) that redirects human T cells to lyse malignant glioma expressing a tumor-specific mutation of the EGFR (EGFRvIII).
View Article and Find Full Text PDFBackground: Sym004 is a mixture of two monoclonal antibodies (mAbs), futuximab and modotuximab, targeting non-overlapping epitopes on the epidermal growth factor receptor (EGFR). Previous studies have shown that Sym004 is more efficient at inducing internalization and degradation of EGFR than individual components, which translates into superior cancer cell inhibition. We investigated whether Sym004 induces removal of EGFRvIII and if this removal translates into tumor growth inhibition in hard-to-treat glioblastomas (GBMs) harboring the mutated, constitutively active EGFR variant III (EGFRvIII).
View Article and Find Full Text PDFContext: - The oncolytic polio-rhinovirus recombinant (PVSRIPO) has demonstrated promise in currently ongoing phase I/II clinical trials against recurrent glioblastoma and was granted breakthrough therapy designation by the Food and Drug Administration/Center for Biologics Evaluation and Research. A reliable clinical assay to document expression of the poliovirus receptor, CD155, in routinely available patient tumor samples is needed for continued clinical development of PVSRIPO oncolytic immunotherapy in primary brain tumors and beyond.
Objectives: - To validate a novel anti-CD155 antibody for immunohistochemistry and develop a robust, reliable, and specific protocol for detecting CD155 expression in glioblastoma formalin-fixed, paraffin-embedded (FFPE) tissue samples.
Primary brain tumor patients experience high levels of distress. The purpose of this cross-sectional, retrospective study is to evaluate the level and different sources of psychosocial distress and how these pertain to health-related quality of life (HRQoL). The Primary and Recurrent Glioma registry at Duke's The Preston Robert Tisch Brain Tumor Center was queried retrospectively for demographic and clinical information on patients seen between December 2013 and February 2014.
View Article and Find Full Text PDFBackground: Of the 4 medulloblastoma subgroups, Group 3 is the most aggressive but the importance of angiogenesis is unknown. This study sought to determine the role of angiogenesis and identify clinically relevant biomarkers of tumor vascularity and survival in Group 3 medulloblastoma.
Methods: VEGFA mRNA expression and survival from several patient cohorts were analyzed.
VS-4718, a novel inhibitor of focal adhesion kinase (FAK), was tested against the Pediatric Preclinical Testing Program's (PPTP's) in vitro cell line panel and showed a median relative IC of 1.22 μM. VS-4718 was tested in vivo against the PPTP xenograft models using a dose of 50 mg/kg administered by the oral route twice daily for 21 days.
View Article and Find Full Text PDFBackground: CBL0137 is a novel drug that modulates FAcilitates Chromatin Transcription (FACT), resulting in simultaneous nuclear factor-κB suppression, heat shock factor 1 suppression and p53 activation. CBL0137 has demonstrated antitumor effects in animal models of several adult cancers and neuroblastoma.
Procedures: CBL0137 was tested against the Pediatric Preclinical Testing Program (PPTP) in vitro cell line panel at concentrations ranging from 1.
Traditional approaches to evaluating antitumor agents using human tumor xenograft models have generally used cohorts of 8 to 10 mice against a limited panel of tumor models. An alternative approach is to use fewer animals per tumor line, allowing a greater number of models that capture greater molecular/genetic heterogeneity of the cancer type. We retrospectively analyzed 67 agents evaluated by the Pediatric Preclinical Testing Program to determine whether a single mouse, chosen randomly from each group of a study, predicted the median response for groups of mice using 83 xenograft models.
View Article and Find Full Text PDFBackground: MK-8242 is an inhibitor of MDM2 that stabilizes the tumor suppressor TP53 and induces growth arrest or apoptosis downstream of TP53 induction.
Procedures: MK-8242 was tested against the Pediatric Preclinical Testing Program (PPTP) in vitro cell line panel at concentrations from 1.0 nM to 10.
Some patients with cancer never develop metastasis, and their host response might provide cues for innovative treatment strategies. We previously reported an association between autoantibodies against complement factor H (CFH) and early-stage lung cancer. CFH prevents complement-mediated cytotoxicity (CDC) by inhibiting formation of cell-lytic membrane attack complexes on self-surfaces.
View Article and Find Full Text PDF