Biological ion channels are fundamental to maintaining life. In this manuscript we apply our recently developed statistical and linear response theory to investigate Na+ conduction through the prokaryotic Na+ channel NaChBac. This work is extended theoretically by the derivation of ionic conductivity and current in an electrochemical gradient, thus enabling us to compare to a range of whole-cell data sets performed on this channel.
View Article and Find Full Text PDFVoltage-gated sodium channels (NaVs) play fundamental roles in eukaryotes, but their exceptional size hinders their structural resolution. Bacterial NaVs are simplified homologues of their eukaryotic counterparts, but their use as models of eukaryotic Na channels is limited by their homotetrameric structure at odds with the asymmetric Selectivity Filter (SF) of eukaryotic NaVs. This work aims at mimicking the SF of eukaryotic NaVs by engineering radial asymmetry into the SF of bacterial channels.
View Article and Find Full Text PDFBackground: Acanthamoeba is well known to produce a blinding keratitis and serious brain infection known as encephalitis. Effective treatment is problematic, and can continue up to a year, and even then, recurrence can ensue. Partly, this is due to the capability of vegetative amoebae to convert into resistant cysts.
View Article and Find Full Text PDFBackground: Bacterial sodium channels are important models for understanding ion permeation and selectivity. However, their homotetrameric structure limits their use as models for understanding the more complex eukaryotic voltage-gated sodium channels (which have a pseudo-heterotetrameric structure formed from an oligomer composed of four domains). To bridge this gap we attempted to synthesise oligomers made from four covalently linked bacterial sodium channel monomers and thus resembling their eukaryotic counterparts.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
February 2019
A key driving force for ion channel selectivity is represented by the negative charge of the Selectivity Filter carried by aspartate (D) and glutamate (E) residues. However, the structural effects and specific properties of D and E residues have not been extensively studied. In order to investigate this issue we studied the mutants of NaChBac channel with all possible combinations of D and E in the charged rings in position 191 and 192.
View Article and Find Full Text PDFIon channel selectivity is essential for their function, yet the molecular basis of a channel's ability to select between ions is still rather controversial. In this work, using a combination of molecular dynamics simulations and electrophysiological current measurements we analyze the ability of the NaChBac channel to discriminate between calcium and sodium. Our simulations show that a single calcium ion can access the Selectivity Filter (SF) interacting so strongly with the glutamate ring so as to remain blocked inside.
View Article and Find Full Text PDFNaChBac was the first discovered bacterial sodium voltage-dependent channel, yet computational studies are still limited due to the lack of a crystal structure. In this work, a pore-only construct built using the NavMs template was investigated using unbiased molecular dynamics and metadynamics. The potential of mean force (PMF) from the unbiased run features four minima, three of which correspond to sites IN, CEN, and HFS discovered in NavAb.
View Article and Find Full Text PDFEugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap.
View Article and Find Full Text PDFCalcium (Ca(2+)) is a key component of the signalling network by which plant cells respond to developmental and environmental signals. A change in guard cell cytosolic free Ca(2+)([Ca(2+)]cyt) is an early event in the response of stomata to both opening and closing stimuli, and cyclic nucleotide-mediated Ca(2+) signalling has been implicated in the regulation of stomatal aperture. A range of techniques have been used to measure [Ca(2+)]cyt in plant cells.
View Article and Find Full Text PDFEugenol has antifungal activity and is recognised as having therapeutic potential. However, little is known of the cellular basis of its antifungal activity and a better understanding of eugenol tolerance should lead to better exploitation of eugenol in antifungal therapies. The model yeast, Saccharomyces cerevisiae, expressing apoaequorin was used to show that eugenol induces cytosolic Ca(2+) elevations.
View Article and Find Full Text PDFTwo distant homologues of the bestrophin gene family have been identified in the filamentous fungus, Aspergillus nidulans (anbest1 and anbest2). AnBEST1 was functionally characterised using the patch clamp technique and was shown to be an anion selective channel permeable to citrate. Furthermore, AnBEST1 restored the growth of the pdr12Δ yeast mutant on inhibitory concentrations of extracellular propionate, benzoate and sorbate, also consistent with carboxylated organic anion permeation of AnBEST1.
View Article and Find Full Text PDFA putative CLC voltage-gated anion channel gene from Aspergillus nidulans (AnCLCA) is characterised. The expression of the AnCLCA cDNA restored the iron-limited growth of the Saccharomyces cerevisiae CLC null mutant strain (gef1) suggesting that AnCLCA functions as a chloride channel. An AnCLCA conditional mutant was created and exhibited a strong and specific growth inhibition in the presence of extracellular copper concentrations >18 microM.
View Article and Find Full Text PDFThe low-affinity cation transporter (LCT1) from wheat (Triticum aestivum) was expressed in the methylotrophic yeast Pichia pastoris and its transport characteristics studied employing Ca(45) and Cd(109). A clone (LCT1#3) with the highest uptake of 14pmol of Ca/10(6)cells/10min when exposed to 100microM Ca(45) was chosen for further Ca(45) and Cd(109) transport characteristics. We report for the first time a K(m) for Ca by LCT1 of 0.
View Article and Find Full Text PDFRecent years have seen considerable progress in identifying anion channel activities in higher plant cells. This review outlines the functional properties of plasma membrane anion channels in plant cells and discusses their likely roles in root function. Plant anion channels can be grouped according to their voltage dependence and kinetics: (1) depolarization-activated anion channels which mediate either anion efflux (R and S types) or anion influx (outwardly rectifying type); (2) hyperpolarization-activated anion channels which mediate anion efflux, and (3) anion channels activated by light or membrane stretch.
View Article and Find Full Text PDFCch1p and Mid1p are components of a high-affinity Ca(2+)-permeable channel in the yeast plasma membrane. Here, we show that growth of mutants in the Cch1pMid1p channel is markedly hypersensitive to low temperature and to high iron concentration in the medium. Both phenotypes were suppressed by high Ca(2+) concentration.
View Article and Find Full Text PDFOrganic-acid secretion from higher plant roots into the rhizosphere plays an important role in nutrient acquisition and metal detoxification. In this study we report the electrophysiological characterization of anion channels in Arabidopsis (Arabidopsis thaliana) root epidermal cells and show that anion channels represent a pathway for citrate efflux to the soil solution. Plants were grown in nutrient-replete conditions and the patch clamp technique was applied to protoplasts isolated from the root epidermal cells of the elongation zone and young root hairs.
View Article and Find Full Text PDFThe role of mitochondria in providing intracellular ATP that controls the activity of plasma membrane outward-rectifying K+ channels was evaluated. The OsCHLH rice mutant, which lacks chlorophyll in the thylakoids, was isolated by T-DNA gene trapping (Jung, K.-H.
View Article and Find Full Text PDFIn contrast to animal and plant cells, very little is known of ion channel function in fungal physiology. The life cycle of most fungi depends on the "filamentous" polarized growth of hyphal cells; however, no ion channels have been cloned from filamentous fungi and comparatively few preliminary recordings of ion channel activity have been made. In an attempt to gain an insight into the role of ion channels in fungal hyphal physiology, a homolog of the yeast K(+) channel (ScTOK1) was cloned from the filamentous fungus, Neurospora crassa.
View Article and Find Full Text PDF