Organic color centers are an emergent class of quantum emitters that hold vast potential for applications in bioimaging, chemical sensing, and quantum information processing. Here, we show that these synthetic color centers follow interesting structure-property relationships through comparative spectral studies of 14 purified single-walled carbon nanotube chiralities and 30 different functional groups that vary in electron-withdrawing capability and bonding configurations. The defect emission is tunable by as much as 400 meV in the near-infrared as a function of host structure and the chemical nature of the color centers.
View Article and Find Full Text PDF