Publications by authors named "Stephen K Costa"

Antibiotic-induced gut microbiome dysbiosis (AID) is known to be influenced by host dietary composition. However, how and when diet modulates gut dysbiosis remains poorly characterized. Thus, here, we utilize a multi-omics approach to characterize how a diet supplemented with oats, a rich source of microbiota-accessible carbohydrates, or dextrose impacts amoxicillin-induced changes to gut microbiome structure and transcriptional activity.

View Article and Find Full Text PDF

Nosocomial infections caused by resistant Gram-positive organisms are on the rise, presumably due to a combination of factors including prolonged hospital exposure, increased use of invasive procedures, and pervasive antibiotic therapy. Although antibiotic stewardship and infection control measures are helpful, newer agents against multidrug-resistant (MDR) Gram-positive bacteria are urgently needed. Here, we describe our efforts that led to the identification of 5-amino-4-quinolone with exceptionally potent Gram-positive activity with minimum inhibitory concentrations (MICs) ≤0.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are one of the key immune responses that can eliminate pathogenic bacteria through membrane perturbation. As a successful skin commensal, Staphylococcus epidermidis can sense and respond to AMPs through the GraXRS two-component system and an efflux system comprising the VraG permease and VraF ATPase. GraS is a membrane sensor known to function in AMP resistance through a negatively charged, 9-residue extracellular loop, which is predicted to be linear without any secondary structure.

View Article and Find Full Text PDF

Host defense proteins (HDPs), aka defensins, are a key part of the innate immune system that functions by inserting into the bacterial membranes to form pores to kill invading and colonizing microorganisms. To ensure survival, microorganism such as S. aureus has developed survival strategies to sense and respond to HDPs.

View Article and Find Full Text PDF

Colonization of the skin by is associated with exacerbation of atopic dermatitis (AD), but any direct mechanism through which dysbiosis of the skin microbiome may influence the development of AD is unknown. Here, we show that proteases and phenol-soluble modulin α (PSMα) secreted by lead to endogenous epidermal proteolysis and skin barrier damage that promoted inflammation in mice. We further show that clinical isolates of different coagulase-negative staphylococci (CoNS) species residing on normal skin produced autoinducing peptides that inhibited the system, in turn decreasing PSMα expression.

View Article and Find Full Text PDF

is the leading cause of infections on indwelling medical devices worldwide. Intrinsic antibiotic resistance and vigorous biofilm production have rendered these infections difficult to treat and, in some cases, require the removal of the offending medical prosthesis. With the exception of two widely passaged isolates, RP62A and 1457, the pathogenesis of infections caused by clinical strains is poorly understood due to the strong genetic barrier that precludes the efficient transformation of foreign DNA into clinical isolates.

View Article and Find Full Text PDF