Introduction And Hypothesis: Fully absorbable implants may be an alternative to permanent meshes in the correction pf pelvic organ prolapse (POP) as they may reduce adverse events by promoting tissue regeneration and collagen metabolism. This study was aimed at evaluating the long-term host and biomechanical response to a fully absorbable poly-4-hydroxybutyrate (P4HB) scaffold in comparison with polypropylene (PP) mesh.
Methods: Poly-4-hydroxybutyrate scaffold (n = 16) and PP mesh (n = 16) were surgically implanted in the posterior vaginal wall of parous female Dohne Merino sheep.
Combinatorial optimization is a broadly attractive area for potential quantum advantage, but no quantum algorithm has yet made the leap. Noise in quantum hardware remains a challenge, and more sophisticated quantum-classical algorithms are required to bolster their performance. Here, we introduce an iterative quantum heuristic optimization algorithm to solve combinatorial optimization problems.
View Article and Find Full Text PDFS K-edge XAS for a low-spin NiII-thiolate complex shows a 0.2 eV shift to higher pre-edge energy but no change in Ni-S bond covalency upon H-bonding. This is different from the H-bonding effect we observed in high-spin FeIII-thiolate complexes where there is a significant decrease in Fe-S bond covalency but no change in energy due to H-bonding (Dey, A.
View Article and Find Full Text PDFS K-edge X-ray absorption spectroscopy data on a series of NiII complexes with thiolate (RS-) and oxidized thiolate (RSO2-) ligands are used to quantify Ni-S bond covalency and its change upon ligand oxidation. Analyses of these results using geometry-optimized density functional theory (DFT) calculations suggest that the Ni-S sigma bonds do not weaken on ligand oxidation. Molecular orbital analysis indicates that these oxidized thiolate ligands use filled high-lying S-O pi* orbitals for strong sigma donation.
View Article and Find Full Text PDF