Fluorescence lifetime imaging (FLi) could potentially improve exogenous near-infrared (NIR) fluorescence imaging, because it offers the capability of discriminating a signal of interest from background, provides real-time monitoring of a chemical environment, and permits the use of several different fluorescent dyes having the same emission wavelength. We present a high-power, LED-based, NIR light source for the clinical translation of wide-field (larger than 5 cm in diameter) FLi at frequencies up to 35 MHz. Lifetime imaging of indocyanine green (ICG), IRDye 800-CW, and 3,3(')-diethylthiatricarbocyanine iodide (DTTCI) was performed over a large field of view (10 cm by 7.
View Article and Find Full Text PDFBackground: The aim of this study was to determine whether the invisible near-infrared (NIR) fluorescence properties of methylene blue (MB), a dye already approved by the U.S. Food and Drug Administration for other indications, could be exploited for real-time, intra-operative identification of the ureters.
View Article and Find Full Text PDFNear-infrared (NIR) light penetrates relatively deep into skin, but its usefulness for biomedical imaging is constrained by high scattering of living tissue. Previous studies have suggested that treatment with hyperosmotic "clearing" agents might change the optical properties of tissue, resulting in improved photon transport and reduced scatter. Since this would have a profound impact on image-guided surgery, we seek to quantify the magnitude of the optical clearing effect in living subjects.
View Article and Find Full Text PDFWe demonstrate how to construct calibrated, stable, and inexpensive tissue-like phantoms for near-IR (NIR) fluorescence imaging applications. The bulk phantom material is composed of gelatin, intralipid, hemoglobin, and indocyanine green (ICG). Absorbance, scatter, background fluorescence, and texture can be tuned as desired.
View Article and Find Full Text PDFIntraoperative near-infrared (NIR) fluorescence imaging provides the surgeon with real-time image guidance during cancer and other surgeries. We have previously reported the use of NIR fluorescent quantum dots (QDs) for sentinel lymph node (SLN) mapping. However, because of concerns over potential toxicity, organic alternatives to QDs will be required for initial clinical studies.
View Article and Find Full Text PDF