Publications by authors named "Stephen J Free"

The genome has a gene cluster for the synthesis of galactosaminogalactan (GAG). The gene cluster includes the following: (1) UDP-glucose-4-epimerase to convert UDP-glucose and UDP--acetylglucosamine to UDP-galactose and UDP--acetylgalactosamine (NCU05133), (2) GAG synthase for the synthesis of an acetylated GAG (NCU05132), (3) GAG deacetylase (/NCW-1/NCU05137), (4) GH135-1, a GAG hydrolase with specificity for -acetylgalactosamine-containing GAG (NCU05135), and (5) GH114-1, a galactosaminidase with specificity for galactosamine-containing GAG (NCU05136). The deacetylase was previously shown to be a major cell wall glycoprotein and given the name of NCW-1 (non-GPI anchored cell wall protein-1).

View Article and Find Full Text PDF
Article Synopsis
  • Fungal glycosphingolipids (GSLs) are crucial for membrane function and vesicle trafficking in fungi, impacting their life cycle significantly.
  • Mutant studies reveal that the acidic GSL biosynthetic pathway is vital for fungal viability, with specific deletion mutations leading to lethal consequences.
  • The neutral GSL biosynthetic pathway is also essential, as its disruption affects various growth and developmental processes in the fungus.
View Article and Find Full Text PDF

Galactofuranose is a constituent of the cell walls of filamentous fungi. The galactofuranose can be found as a component of N-linked oligosaccharides, in O-linked oligosaccharides, in GPI-anchored galactomannan, and in free galactomannan. The Neurospora genome contains a single UDP-galactose mutase gene (ugm-1/NCU01824) and two UDP-galactofuranose translocases used to import UDP-galactofuranose into the lumen of the Golgi apparatus (ugt-1/NCU01826 and ugt-2/NCU01456).

View Article and Find Full Text PDF

The formation of a cell wall is vital for the survival and growth of a fungal cell. Fungi express members of the GH76 family of α-1,6-mannanases which play an important role in cell wall biogenesis. In this report we characterize the Neurospora crassa DFG-5 α-1,6-mannanase and demonstrate that it binds to the α-1,6-mannose backbone of an N-linked galactomannan found on cell wall glycoproteins.

View Article and Find Full Text PDF

GH16 chitin transferases, GH17 β-1,3-glucan transferases, and GH72 β-1,3-glucan/lichenin transferases are important fungal cell wall crosslinking enzymes. The genome encodes three genes from the GH17 gene family and five members in the GH16 subfamily 18 and 19 fungal chitin transferases. We created deletion mutants lacking all three GH17 genes and determined that they had wild type morphology and are more sensitive to cell wall perturbation reagents than the wild type.

View Article and Find Full Text PDF

This review discusses the wealth of information available for the cell wall. The basic organization and structure of the cell wall is presented and how the wall changes during the life cycle is discussed. Over forty cell wall glycoproteins have been identified by proteomic analyses.

View Article and Find Full Text PDF

The Trichophyton rubrum genome contains six proteins containing two or more lysin M (LysM) domains. We have characterized two of these proteins, LysM1 and LysM2, and demonstrated that these proteins have the capacity to bind two substrates, chitin and N-linked oligosaccharides associated with human skin glycoproteins. We have characterized the individual LysM domains in LysM1, and shown that the protein contains two functional LysM domains.

View Article and Find Full Text PDF

Neurospora crassa contains all four enzymes for the synthesis of DHN (dihydroxynaphthalene), the substrate for melanin formation. We show that the DHN melanin pathway functions during N. crassa female development to generate melanized peridium and ascospore cell walls.

View Article and Find Full Text PDF

The formation of a glucan/chitin/glycoprotein cell wall matrix is vital for fungal survival, growth, and morphogenesis. The cell wall proteins are important cell wall components and function in adhesion, signal transduction, and as cell wall structural elements. In this report we demonstrate that Neurospora crassa GH72 glucan transferases function to crosslink cell wall glycoproteins into the cell wall.

View Article and Find Full Text PDF

The fungal cell wall is an extracellular organelle that provides structure and protection to cells. The cell wall also influences the interactions of cells with each other and surfaces. The cell wall can be reorganized in response to changing environmental conditions and different types of stress.

View Article and Find Full Text PDF

The Neurospora crassa genome encodes five GH72 family transglycosylases, and four of these enzymes (GEL-1, GEL-2, GEL-3 and GEL-5) have been found to be present in the cell wall proteome. We carried out an extensive genetic analysis on the role of these four transglycosylases in cell wall biogenesis and demonstrated that the transglycosylases are required for the formation of a normal cell wall. As suggested by the proteomic analysis, we found that multiple transglycosylases were being expressed in N.

View Article and Find Full Text PDF

A proteomic analysis of the conidial cell wall identified 35 cell wall proteins. A comparison with the proteome of the vegetative hyphae showed that 16 cell wall proteins were shared, and that these shared cell wall proteins were cell wall biosynthetic proteins or cell wall structural proteins. Deletion mutants for 34 of the genes were analyzed for phenotypes indicative of conidial cell wall defects.

View Article and Find Full Text PDF

We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins.

View Article and Find Full Text PDF

A biochemical pathway for the incorporation of cell wall protein into the cell wall of Neurospora crassa was recently proposed. In this pathway, the DFG-5 and DCW-1 endo-α-1,6-mannanases function to covalently cross-link cell wall protein-associated N-linked galactomannans, which are structurally related to the yeast outer chain mannans, into the cell wall glucan-chitin matrix. In this report, we demonstrate that the mannosyltransferase enzyme Och1p, which is needed for the synthesis of the N-linked outer chain mannan, is essential for the incorporation of cell wall glycoproteins into the Candida albicans cell wall.

View Article and Find Full Text PDF

Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1) Genes encoding components of the PACC signal transduction pathway, 2) Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3) Transcriptional factor genes, 4) Autophagy genes, and 5) Other miscellaneous genes.

View Article and Find Full Text PDF

Intercellular communication of vegetative cells and their subsequent cell fusion is vital for different aspects of growth, fitness, and differentiation of filamentous fungi. Cell fusion between germinating spores is important for early colony establishment, while hyphal fusion in the mature colony facilitates the movement of resources and organelles throughout an established colony. Approximately 50 proteins have been shown to be important for somatic cell-cell communication and fusion in the model filamentous fungus Neurospora crassa.

View Article and Find Full Text PDF

The Neurospora crassa cps-1 gene encodes a polysaccharide synthase with homology to the Cryptococcus neoformans hyaluronic acid synthase Cps1p. Homologs of the cps-1 gene are found in the genomes of many fungi. Loss of CPS-1 results in a cell wall defect that affects all stages of the N.

View Article and Find Full Text PDF

The Neurospora crassa genome encodes two 1,3-α-glucan synthases. One of these 1,3-α-glucan synthase genes, ags-1, was shown to be required for the synthesis of 1,3-α-glucan in the aerial hyphae and macroconidia cell walls. 1,3-α-Glucan was found in the conidia cell wall, but was absent from the vegetative hyphae cell wall.

View Article and Find Full Text PDF

The composition and organization of the cell walls from Saccharomyces cerevisiae, Candida albicans, Aspergillus fumigatus, Schizosaccharomyces pombe, Neurospora crassa, and Cryptococcus neoformans are compared and contrasted. These cell walls contain chitin, chitosan, β-1,3-glucan, β-1,6-glucan, mixed β-1,3-/β-1,4-glucan, α-1,3-glucan, melanin, and glycoproteins as major constituents. A comparison of these cell walls shows that there is a great deal of variability in fungal cell wall composition and organization.

View Article and Find Full Text PDF

A large number of cell wall proteins are encoded in the Neurospora crassa genome. Strains carrying gene deletions of 65 predicted cell wall proteins were characterized. Deletion mutations in two of these genes (wsc-1 and ham-7) have easily identified morphological and inhibitor-based defects.

View Article and Find Full Text PDF

The covalent cross-linking of cell wall proteins into the cell wall glucan/chitin matrix is an important step in the biogenesis of the fungal cell wall. We demonstrate that the Neurospora crassa DFG5 (NCU03770) and DCW1 (NCU08127) enzymes function in vivo to cross-link glycoproteins into the cell wall. Mutants lacking DFG5 or DCW1 release slightly elevated levels of cell wall proteins into their growth medium.

View Article and Find Full Text PDF

A screening procedure was used to identify cell fusion (hyphal anastomosis) mutants in the Neurospora crassa single gene deletion library. Mutants with alterations in 24 cell fusion genes required for cell fusion between conidial anastomosis tubes (CATs) were identified and characterized. The cell fusion genes identified included 14 genes that are likely to function in signal transduction pathways needed for cell fusion to occur (mik-1, mek-1, mak-1, nrc-1, mek-2, mak-2, rac-1, pp2A, so/ham-1, ham-2, ham-3, ham-5, ham-9, and mob3).

View Article and Find Full Text PDF

Neurospora crassa has been at the forefront of biological research from the early days of biochemical genetics to current progress being made in understanding gene and genetic network function. Here, we discuss recent developments in analysis of the fundamental form of fungal growth, development and proliferation -- the hypha. Understanding the establishment and maintenance of polarity, hyphal elongation, septation, branching and differentiation are at the core of current research.

View Article and Find Full Text PDF

The enzyme α-1,6-mannosyltransferase (OCH-1) is required for the synthesis of galactomannans attached to the N-linked oligosaccharides of Neurospora crassa cell wall proteins. The Neurospora crassa och-1 mutant has a tight colonial phenotype and a defective cell wall. A carbohydrate analysis of the och-1 mutant cell wall revealed a 10-fold reduction in the levels of mannose and galactose and a total lack of 1,6-linked mannose residues.

View Article and Find Full Text PDF

Mutants of Neurospora crassa unable to participate in vegetative hyphal fusion (anastomosis) were isolated and characterized. From this analysis, three genes, rcm-1, rco-1 and ham-5, were identified and shown to be required for hyphal fusion. The rcm-1 and rco-1 genes are homologues of the Saccharomyces cerevisiae SSN6 and TUP1 genes, which encode a dimeric transcription factor in yeast.

View Article and Find Full Text PDF