Publications by authors named "Stephen J Eichhorn"

A highly hydrophobic fluorinated ionic liquid (IL), 3-aminopropyl-tributylphosphonium bis(trifluoromethylsolfonyl)imide ([aP][NTf]), was synthesized, and applied for the surface modification of cellulose nanomaterials (CNMs) by reductive amination. The modified CNMs were fully characterized for their chemical structure, morphology, thermal stability, and surface hydrophobicity. Results obtained from Nuclear Magnetic Resonance spectroscopy (H, C, F and P), Fourier Transform Infrared spectroscopy, X-ray Photoelectron Spectroscopy, and X-ray diffraction confirmed the successful grafting of [aP][NTf] onto the surface of CNMs up to a degree of surface functionalization of 2.

View Article and Find Full Text PDF

The ecological and economic benefits of mycelium composites offer a promising opportunity for supporting sustainable development in Africa. This study focuses on assessing the environmental impact of mycelium composites for building and construction (MCBs) by conducting a life cycle assessment (LCA) in the context of Africa. It is demonstrated that the potential environmental impact of MCBs is substantially influenced by the use and source of electrical power for autoclaves, incubators, and ovens, making the culturing and post-processing phases the major environmental hotspots.

View Article and Find Full Text PDF

Fulminating gold, the first high-explosive compound to be discovered, disintegrates into a mysterious cloud of purple smoke, the nature of which has been speculated upon since its discovery in the 15th century. In this work, we show that the colour of the smoke is due to the presence of gold nanoparticles.

View Article and Find Full Text PDF

A gelled Pickering emulsion system was fabricated by first stabilizing linseed oil droplets in water with dialdehyde cellulose nanocrystals (DACNCs) and then cross-linking with cystamine. Cross-linking of the DACNCs was shown to occur by a reaction between the amine groups on cystamine and the aldehyde groups on the CNCs, causing gelation of the nanocellulose suspension. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the cystamine-cross-linked CNCs (cysCNCs), demonstrating their presence.

View Article and Find Full Text PDF

Energy harvesting textiles have emerged as a promising solution to sustainably power wearable electronics. Textile-based solar cells (SCs) interconnected with on-body electronics have emerged to meet such needs. These technologies are lightweight, flexible, and easy to transport while leveraging the abundant natural sunlight in an eco-friendly way.

View Article and Find Full Text PDF

Urea and phosphoric acid are essential for the isolation of phosphorylated cellulose nanocrystals (CNCs). Besides limiting dissolution of nanocrystals, urea facilitates the swelling of fibres thus increasing access for the phosphorylating agent. The aim of this study was to determine optimal conditions for isolation of highly charged phosphorylated CNCs.

View Article and Find Full Text PDF

The degree of crystallinity in cellulose significantly affects the physical, mechanical, and chemical properties of cellulosic materials, their processing, and their final application. Measuring the crystalline structures of cellulose is a challenging task due to inadequate consistency among the variety of analytical techniques available and the lack of absolute crystalline and amorphous standards. Our article reviews the primary methods for estimating the crystallinity of cellulose, namely, X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Raman and Fourier-transform infrared (FTIR) spectroscopy, sum-frequency generation vibrational spectroscopy (SFG), as well as differential scanning calorimetry (DSC), and evolving biochemical methods using cellulose binding molecules (CBMs).

View Article and Find Full Text PDF

It is generally acknowledged that to advance the application of cellulose nanofibrils (CNFs) in product formulations, challenges associated with the drying and redispersion of this material must be addressed. Despite increased research efforts in this area, these interventions still involve the use of additives or conventional drying technologies, which both have the capacity to drive up the cost of the final CNF powders. Herein, we prepared dried and redispersible CNF powders with varying surface functionalities without the use of additives nor conventional drying technologies.

View Article and Find Full Text PDF

Cellulose is known to interact well with water, but is insoluble in it. Many polysaccharides such as cellulose are known to have significant hydrogen bond networks joining the molecular chains, and yet they are recalcitrant to aqueous solvents. This review charts the interaction of cellulose with water but with emphasis on the formation of both natural and synthetic fiber composites.

View Article and Find Full Text PDF

Conventional composite formulation of cellulose nanocrystals (CNCs) with thermoplastics involves melt compounding or in situ polymerisation. In this rather unconventional approach, polypropylene (PP) microparticles were finely suspended and stabilized, at varying weight loadings, in aqueous suspensions of amphiphilic CNCs to enable adsorption of the nanoparticles onto the thermoplastic. In order to achieve these suspensions, CNCs were modified with either octyl or hexadecyl groups.

View Article and Find Full Text PDF

Graphene-cellulose interactions have considerable potential in the development of new materials. In previous computational work (Biomacromolecules2016, 16, 1771), we predicted that the model 100 hydrophobic surface of cellulose interacted favourably with pristine graphene in aqueous solution molecular dynamics simulations; conversely, a model of the hydrophilic 010 surface of cellulose exhibited progressive rearrangement to present a more hydrophobic face with the graphene, with weakened hydrogen bonds between cellulose chains and partial permeation of water. Here, we extend this work by simulating the interaction in aqueous solution of the amphiphilic 110 surface of a cellulose Iβ microfibril model, comprising 36 chains of 40 glucosyl residues, with an infinite sheet of pristine graphene.

View Article and Find Full Text PDF

Sodium (Na) is the most appealing alternative to lithium as an anode material for cost-effective, high-energy-density energy-storage systems by virtue of its high theoretical capacity and abundance as a resource. However, the uncontrolled growth of Na dendrites and the limited cell cycle life impede the large-scale practical implementation of Na-metal batteries (SMBs) in commonly used and low-cost carbonate electrolytes. Herein, the employment of a novel bifunctional electrospun nanofibrous separator comprising well-ordered, uniaxially aligned arrays, and abundant sodiophilic functional groups is presented for SMBs.

View Article and Find Full Text PDF

Linseed oil-in-water Pickering emulsions are stabilized by both sulfated CNCs (sCNCs) and octylamine-modified CNCs (oCNCs). oCNCs with hydrophobic moieties grafted on the surfaces of otherwise intact nanocrystals provided emulsions exhibiting stronger resistance to creaming of oil droplets, compared with unmodified sCNCs. sCNCs were not able to completely stabilize linseed oil in water at low CNC concentrations while oCNCs provided emulsions with no unemulsified oil residue at the same concentrations.

View Article and Find Full Text PDF

Wood is a sustainable structural material, but it cannot be easily shaped while maintaining its mechanical properties. We report a processing strategy that uses cell wall engineering to shape flat sheets of hardwood into versatile three-dimensional (3D) structures. After breaking down wood’s lignin component and closing the vessels and fibers by evaporating water, we partially re-swell the wood in a rapid water-shock process that selectively opens the vessels.

View Article and Find Full Text PDF

The design of new functional materials and devices substantially relies on self-assembly of hierarchical structures. Formation of 2D platelets is known in the enzymatic synthesis of cellulose-like polymers. Here we demonstrate the feasibility of postsynthesis assembly of novel fluorinated cellodextrins.

View Article and Find Full Text PDF

Sustainable fibre reinforced polymer composites have drawn significant attention in many industrial sectors as a means for overcoming issues with end-of-life regulations and other environmental concerns. Plant based natural fibres are considered to be the most suitable reinforcement for sustainable composites since they are typically from renewable resources, are cheap, and are biodegradable. In this study, a number of plant based natural fibres-curaua, flax, and jute fibres-are used to reinforce epoxy, poly(lactic acid) (PLA), and polypropylene (PP) matrices to form aligned discontinuous natural fibre reinforced composites (ADNFRC).

View Article and Find Full Text PDF

Locust bean/xanthan gum (LBG/XG) synergistic networks have previously been well studied, with evidence that junction zones between the two polymers result in hydrophobic domains. Here we report on the effect of both hydrophilic and hydrophobic cellulose nanocrystals (CNCs) on the rheological properties of the individual gums, the gum networks, and emulsion gels consisting of the gum network and corn oil. We also take advantage of differences in the autofluorescent spectra for each of the components to map their distribution within the gel and emulsion gel systems.

View Article and Find Full Text PDF

Understanding the fine details of the self-assembly of building blocks into complex hierarchical structures represents a major challenge en route to the design and preparation of soft-matter materials with specific properties. Enzymatically synthesised cellodextrins are known to have limited water solubility beyond DP9, a point at which they self-assemble into particles resembling the antiparallel cellulose II crystalline packing. We have prepared and characterised a series of site-selectively fluorinated cellodextrins with different degrees of fluorination and substitution patterns by chemoenzymatic synthesis.

View Article and Find Full Text PDF

Wood presents a hierarchical structure, containing features at all length scales: from the tracheids or vessels that make up its cellular structure, through to the microfibrils within the cell walls, down to the molecular architecture of the cellulose, lignin, and hemicelluloses that comprise its chemical makeup. This structure renders it with high mechanical (e.g.

View Article and Find Full Text PDF

Photoluminescence of cellulose, and other polysaccharides, has long been presumed to be due to contamination of the material by other autofluorescent compounds - such as lignin, or proteins. This is attributed to the lack of known fluorescent chemical groups present in the molecular structure of polysaccharides and the weak emission intensity when compared to typical fluorophores. However, recent research suggests that the observed luminescence may actually be due to transitions involving the n orbitals containing lone electron pairs present in oxyl groups, stabilised by the molecular forces between the polysaccharide chains.

View Article and Find Full Text PDF

Growing environmental concerns and stringent waste-flow regulations make the development of sustainable composites a current industrial necessity. Natural fibre reinforcements are derived from renewable resources and are both cheap and biodegradable. When they are produced using eco-friendly, low hazard processes, then they can be considered as a sustainable source of fibrous reinforcement.

View Article and Find Full Text PDF

Surface hydrophobization of cellulose nanomaterials has been used in the development of nanofiller-reinforced polymer composites and formulations based on Pickering emulsions. Despite the well-known effect of hydrophobic domains on self-assembly or association of water-soluble polymer amphiphiles, very few studies have addressed the behavior of hydrophobized cellulose nanomaterials in aqueous media. In this study, we investigate the properties of hydrophobized cellulose nanocrystals (CNCs) and their self-assembly and amphiphilic properties in suspensions and gels.

View Article and Find Full Text PDF

There is increased interest in the use of cellulose nanomaterials for the mechanical reinforcement of composites due to their high stiffness and strength. However, challenges remain in accurately determining their distribution within composite microstructures. We report the use of a range of techniques used to image aggregates of cellulose nanocrystals (CNCs) greater than 10 µm2 within a model thermoplastic polymer.

View Article and Find Full Text PDF

Cellulose nanofibers hold much promise for enhancing the mechanical properties of composites owing to their uniquely high stiffness and strength. One major issue limiting this performance however is the dispersion and mixing of cellulose nanofibers within thermoplastic resins. A combination of Raman imaging and chemical analysis has been used to quantify the distribution and mixing of cellulose nanocrystals (CNCs) in a polyethylene-matrix composite.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionresmf91rlthjgvffmcj313o9ogf7h8nf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once