African trypanosomiasis is a neglected tropical disease caused by () and spread by the tsetse fly in sub-Saharan Africa. The trypanosome relies on heat shock proteins for survival in the insect vector and mammalian host. Heat shock protein 90 (HSP90) plays a crucial role in the stress response at the cellular level.
View Article and Find Full Text PDF(Tb) harbours twelve Hsp70 chaperones. Of these, four are predicted to reside in the parasite cytosol. TbHsp70.
View Article and Find Full Text PDFThe Hsp70/J-protein machinery plays an essential role in survival, differentiation, and pathogenesis of the protozoan parasite, and is an emerging target against African Trypanosomiasis. This study evaluated a set of small molecules, inspired by the malonganenones and nuttingins, as modulators of the chaperone activity of the cytosolic heat inducible T. brucei Hsp70 and constitutive TbHsp70.
View Article and Find Full Text PDFThe etiological agent of African trypanosomiasis, (Tb), has been identified to possess an expanded and diverse group of heat shock proteins, which have been implicated in cytoprotection, differentiation, and subsequently progression and transmission of the disease. Heat shock protein 70 (Hsp70) is a highly conserved and ubiquitous molecular chaperone that is important in maintaining protein homeostasis in the cell. Its function is regulated by a wide range of co-chaperones, and inhibition of these functions and interactions with co-chaperones are emerging as potential therapeutic targets for numerous diseases.
View Article and Find Full Text PDFCell Stress Chaperones
January 2019
The etiological agent of the neglected tropical disease African trypanosomiasis, Trypanosoma brucei, possesses an expanded and diverse repertoire of heat shock proteins, which have been implicated in cytoprotection, differentiation, as well as progression and transmission of the disease. Hsp70 plays a crucial role in proteostasis, and inhibition of its interactions with co-chaperones is emerging as a potential therapeutic target for numerous diseases. In light of genome annotations and the release of the genome sequence of the human infective subspecies, an updated and current in silico overview of the Hsp70/J-protein machinery in both T.
View Article and Find Full Text PDFTsetse flies (Glossina spp.) are the sole vectors of the protozoan parasites of the genus Trypanosoma, the causative agents of African Trypanosomiasis. Species of Glossina differ in vector competence and Glossina morsitans morsitans is associated with transmission of Trypanosoma brucei rhodesiense, which causes an acute and often fatal form of African Trypanosomiasis.
View Article and Find Full Text PDFThe majority of mitochondrial proteins are encoded in the nucleus and need to be imported from the cytosol into the mitochondria, and molecular chaperones play a key role in the efficient translocation and proper folding of these proteins in the matrix. One such molecular chaperone is the eukaryotic mitochondrial heat shock protein 70 (Hsp70); however, it is prone to self-aggregation and requires the presence of an essential zinc-finger protein, Hsp70-escort protein 1 (Hep1), to maintain its structure and function. PfHsp70-3, the only Hsp70 predicted to localize in the mitochondria of P.
View Article and Find Full Text PDF