Publications by authors named "Stephen J Atkinson"

The tumour suppressor p16/CDKN2A and the metabolic gene, methyl-thio-adenosine phosphorylase (MTAP), are frequently co-deleted in some of the most aggressive and currently untreatable cancers. Cells with MTAP deletion are vulnerable to inhibition of the metabolic enzyme, methionine-adenosyl transferase 2A (MAT2A), and the protein arginine methyl transferase (PRMT5). This synthetic lethality has paved the way for the rapid development of drugs targeting the MAT2A/PRMT5 axis.

View Article and Find Full Text PDF

The optimization of an allosteric fragment, discovered by differential scanning fluorimetry, to an in vivo MAT2a tool inhibitor is discussed. The structure-based drug discovery approach, aided by relative binding free energy calculations, resulted in AZ'9567 (), a potent inhibitor in vitro with excellent preclinical pharmacokinetic properties. This tool showed a selective antiproliferative effect on methylthioadenosine phosphorylase (MTAP) KO cells, both in vitro and in vivo, providing further evidence to support the utility of MAT2a inhibitors as potential anticancer therapies for MTAP-deficient tumors.

View Article and Find Full Text PDF

Introduction: In methylthioadenosine phosphorylase (MTAP)-deficient tumor cells, reduced S-adenosylmethionine (SAM) levels in the context of elevated methylthioadenosine (MTA) has been hypothesized to lead to inhibition of protein arginine methyltransferase 5 (PRMT5) and tumor growth inhibition. Inhibitors of methionine adenosyltransferase 2A (MAT2a) prevent the synthesis of SAM from methionine and have therefore attracted increasing attention as potential chemotherapeutic agents in cancers characterized by MTAP-loss.

Areas Covered: This review covers patent applications between January 2018 and December 2021.

View Article and Find Full Text PDF

Through regulation of the epigenome, the bromodomain and extra terminal (BET) family of proteins represent important therapeutic targets for the treatment of human disease. Through mimicking the endogenous -acetyl-lysine group and disrupting the protein-protein interaction between histone tails and the bromodomain, several small molecule pan-BET inhibitors have progressed to oncology clinical trials. This work describes the medicinal chemistry strategy and execution to deliver an orally bioavailable tetrahydroquinoline (THQ) pan-BET candidate.

View Article and Find Full Text PDF

Herein, a series of 2,3-dihydrobenzofurans have been developed as highly potent bromo and extra-terminal domain (BET) inhibitors with 1000-fold selectivity for the second bromodomain (BD2) over the first bromodomain (BD1). Investment in the development of two orthogonal synthetic routes delivered inhibitors that were potent and selective but had raised clearance and suboptimal solubility. Insertion of a quaternary center into the 2,3-dihydrobenzofuran core blocked a key site of metabolism and improved the solubility.

View Article and Find Full Text PDF

The profound efficacy of pan-BET inhibitors is well documented, but these epigenetic agents have shown pharmacology-driven toxicity in oncology clinical trials. The opportunity to identify inhibitors with an improved safety profile by selective targeting of a subset of the eight bromodomains of the BET family has triggered extensive medicinal chemistry efforts. In this article, we disclose the identification of potent and selective drug-like pan-BD2 inhibitors such as pyrazole (GSK809) and furan (GSK743) that were derived from the pyrrole fragment .

View Article and Find Full Text PDF

Second-generation bromodomain and extra terminal (BET) inhibitors, which selectively target one of the two bromodomains in the BET proteins, have begun to emerge in the literature. These inhibitors aim to help determine the roles and functions of each domain and assess whether they can demonstrate an improved safety profile in clinical settings compared to pan-BET inhibitors. Herein, we describe the discovery of a novel BET BD2-selective chemotype using a structure-based drug design from a hit identified by DNA-encoded library technologies, showing a structural differentiation from key previously reported greater than 100-fold BD2-selective chemotypes GSK620, GSK046, and ABBV-744.

View Article and Find Full Text PDF

Domain-specific BET bromodomain ligands represent an attractive target for drug discovery with the potential to unlock the therapeutic benefits of antagonizing these proteins without eliciting the toxicological aspects seen with pan-BET inhibitors. While we have reported several distinct classes of BD2 selective compounds, namely, GSK620, GSK549, and GSK046, only GSK046 shows high aqueous solubility. Herein, we describe the lead optimization of a further class of highly soluble compounds based upon a picolinamide chemotype.

View Article and Find Full Text PDF

A number of reports have recently been published describing the discovery and optimization of bromo and extraterminal inhibitors which are selective for the second bromodomain (BD2); these include our own work toward GSK046 () and GSK620 (). This paper describes our approach to mitigating the genotoxicity risk of GSK046 by replacement of the acetamide functionality with a heterocyclic ring. This was followed by a template-hopping and hybridization approach, guided by structure-based drug design, to incorporate learnings from other BD2-selective series, optimize the vector for the amide region, and explore the ZA cleft, leading to the identification of potent, selective, and bioavailable compounds (GSK452), (GSK737), and (GSK217).

View Article and Find Full Text PDF

Pan-BET inhibitors have shown profound efficacy in a number of in vivo preclinical models and have entered the clinic in oncology trials where adverse events have been reported. These inhibitors interact equipotently with the eight bromodomains of the BET family of proteins. To better understand the contribution of each domain to their efficacy and to improve from their safety profile, selective inhibitors are required.

View Article and Find Full Text PDF

The profound efficacy, yet associated toxicity of pan-BET inhibitors is well documented. The possibility of an ameliorated safety profile driven by significantly selective (>100-fold) inhibition of a subset of the eight bromodomains is enticing, but challenging given the close homology. Herein, we describe the X-ray crystal structure-directed optimization of a novel weak fragment ligand with a pan-second bromodomain (BD2) bias, to potent and highly BD2 selective inhibitors.

View Article and Find Full Text PDF

Most bromodomain inhibitors mimic the interactions of the natural acetylated lysine (KAc) histone substrate through key interactions with conserved asparagine and tyrosine residues within the binding pocket. Herein we report the optimization of a series of phenyl sulfonamides that exhibit a novel mode of binding to non-bromodomain and extra terminal domain (non-BET) bromodomains through displacement of a normally conserved network of four water molecules. Starting from an initial hit molecule, we report its divergent optimization toward the ATPase family AAA domain containing 2 (ATAD2) and cat eye syndrome chromosome region, candidate 2 (CECR2) domains.

View Article and Find Full Text PDF

The two tandem bromodomains of the BET (bromodomain and extraterminal domain) proteins enable chromatin binding to facilitate transcription. Drugs that inhibit both bromodomains equally have shown efficacy in certain malignant and inflammatory conditions. To explore the individual functional contributions of the first (BD1) and second (BD2) bromodomains in biology and therapy, we developed selective BD1 and BD2 inhibitors.

View Article and Find Full Text PDF

Treatment of homoallylic N-tosyl amines or allylic N-tosyl hydroxylamines with 1.5 equiv of a malonoyl peroxide provides a stereoselective method to access functionalized pyrrolidines and isoxazolidines. This metal free alkene oxyamination proceeds in 50-85% yield and up to 13:1 trans-selectivity.

View Article and Find Full Text PDF

The bromodomain and extra-terminal domain (BET) family of proteins bind acetylated lysine residues on histone proteins. The four BET bromodomains-BRD2, BRD3, BRD4, and BRDT-each contain two bromodomain modules. BET bromodomain inhibition is a potential therapy for various cancers and immunoinflammatory diseases, but few reported inhibitors show selectivity within the BET family.

View Article and Find Full Text PDF

The Chan-Evans-Lam reaction is a valuable C-N bond forming process. However, aryl boronic acid pinacol (BPin) ester reagents can be difficult coupling partners that often deliver low yields, in particular in reactions with aryl amines. Herein, we report effective reaction conditions for the Chan-Evans-Lam amination of aryl BPin with alkyl and aryl amines.

View Article and Find Full Text PDF

A novel series of potent chiral inhibitors of histone deacetylase (HDAC) is described that contains an oxazoline capping group and a N-(2-aminophenyl)-benzamide unit. Among several new inhibitors of this type exhibiting Class I selectivity and potent inhibition of HDAC3-NCoR2, in vitro assays for the inhibition of HDAC1, HDAC2, and HDAC3-NCoR2 by N-(2-aminophenyl)-benzamide 15k gave respective IC50 values of 80, 110, and 6 nM. Weak inhibition of all other HDAC isoforms (HDAC4, 5, 6, 7, and 9: IC50 > 100 000 nM; HDAC8: IC50 = 25 000 nM; HDAC10: IC50 > 4000 nM; HDAC11: IC50 > 2000 nM) confirmed the Class I selectivity of 15k.

View Article and Find Full Text PDF

PAD4 has been strongly implicated in the pathogenesis of autoimmune, cardiovascular and oncological diseases through clinical genetics and gene disruption in mice. New selective PAD4 inhibitors binding a calcium-deficient form of the PAD4 enzyme have validated the critical enzymatic role of human and mouse PAD4 in both histone citrullination and neutrophil extracellular trap formation for, to our knowledge, the first time. The therapeutic potential of PAD4 inhibitors can now be explored.

View Article and Find Full Text PDF

The synthesis of a novel series of potent chiral inhibitors of histone deacetylase (HDAC) is described that contain a heterocyclic capping group and a N-(2-aminophenyl)benzamide unit that binds in the active site. In vitro assays for the inhibition of HDAC1, HDAC2, HDAC3-NCoR1, and HDAC8 by the N-(2-aminophenyl)benzamide 24a gave respective IC50 values of 930, 85, 12, and 4100 nM, exhibiting class I selectivity and potent inhibition of HDAC3-NCoR1. Both imidazolinone and thiazoline rings are shown to be effective replacements for the pyrimidine ring present in many other 2-(aminophenyl)benzamides previously reported, an example of each ring system at 1 μM causing an increase in histone H3K9 acetylation in the human cell lines Jurkat and HeLa and an increase in cell death consistent with induction of apoptosis.

View Article and Find Full Text PDF

A highly stereocontrolled total synthesis of the cytotoxic marine macrolide aplyronine C is described. The route exploits aldol methodology to install the requisite stereochemistry and features a crucial boron-mediated aldol coupling of an N-vinylformamide-bearing methyl ketone with a macrocyclic aldehyde to introduce the full side chain. The synthesis of two novel C21-C34 side chain analogs is also reported.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionri44h9g9e29h93e3ud8a2utgkh7pkm6q): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once