Publications by authors named "Stephen Hyatt"

In March 2022, the US Food and Drug Administration expanded indications of TRIUMEQ, a once-daily fixed-dose combination (FDC) containing abacavir (ABC), dolutegravir (DTG), and lamivudine (3TC) to include pediatric patients weighing at least 10 kg for the treatment of HIV-1. Prior to this extension, the ABC 600 mg/DTG 50 mg/3TC 300 mg FDC tablet was approved for use only in the adult/adolescent population, weighing ≥40 kg while each component of the FDC was approved for its use in pediatric patients at least 3 months and older. A new child-friendly formulation was developed as an FDC dispersible tablet (DT) of ABC 60 mg/DTG 5 mg/3TC 30 mg for pediatric patients with a body weight ≥ 6 kg.

View Article and Find Full Text PDF

Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists.

View Article and Find Full Text PDF

The estrogen-related receptor alpha (ERRalpha) is a potential target for activation in the treatment of metabolic disease. To date, no small-molecule agonists of ERRalpha have been identified despite several high-throughput screening campaigns. We describe the synthesis and profiling of a small array of compounds designed on the basis of a previously reported agonist-bound crystal structure of the closely related receptor ERRgamma.

View Article and Find Full Text PDF

In superior cervical ganglion neurons, N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A) competitively antagonizes the Ca(2+) current effect of the cannabinoid (CB) agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone (WIN55212-2), and behaves as an inverse agonist by producing opposite current effects when applied alone. In contrast, in neurons expressing CB1 with a K-->A mutation at residue 3.28(192) (i.

View Article and Find Full Text PDF