The SARS-CoV-2 genome encodes a multitude of accessory proteins. Using comparative genomic approaches, an additional accessory protein, ORF3c, has been predicted to be encoded within the ORF3a sgmRNA. Expression of ORF3c during infection has been confirmed independently by ribosome profiling.
View Article and Find Full Text PDFEeyarestatin 24 (ES24) is a promising new antibiotic with broad-spectrum activity. It shares structural similarity with nitrofurantoin (NFT), yet appears to have a distinct and novel mechanism: ES24 was found to inhibit SecYEG-mediated protein transport and membrane insertion in Gram-negative bacteria. However, possible additional targets have not yet been explored.
View Article and Find Full Text PDFImporting proteins into the endoplasmic reticulum (ER) is essential for about 30% of the human proteome. It involves the targeting of precursor proteins to the ER and their insertion into or translocation across the ER membrane. Furthermore, it relies on signals in the precursor polypeptides and components, which read the signals and facilitate their targeting to a protein-conducting channel in the ER membrane, the Sec61 complex.
View Article and Find Full Text PDFThe plant-derived macrocyclic resin glycoside ipomoeassin F (Ipom-F) binds to Sec61α and significantly disrupts multiple aspects of Sec61-mediated protein biogenesis at the endoplasmic reticulum, ultimately leading to cell death. However, extensive assessment of Ipom-F as a molecular tool and a therapeutic lead is hampered by its limited production scale, largely caused by intramolecular assembly of the macrocyclic ring. Here, using in vitro and/or in cellula biological assays to explore the first series of ring-opened analogues for the ipomoeassins, and indeed all resin glycosides, we provide clear evidence that macrocyclic integrity is not required for the cytotoxic inhibition of Sec61-dependent protein translocation by Ipom-F.
View Article and Find Full Text PDFThe heterotrimeric BAG6 complex coordinates the direct handover of newly synthesised tail-anchored (TA) membrane proteins from an SGTA-bound preloading complex to the endoplasmic reticulum (ER) delivery component TRC40. In contrast, defective precursors, including aberrant TA proteins, form a stable complex with this cytosolic protein quality control factor, enabling such clients to be either productively re-routed or selectively degraded. We identify the mitochondrial antiviral-signalling protein (MAVS) as an endogenous TA client of both SGTA and the BAG6 complex.
View Article and Find Full Text PDFMethods Mol Biol
January 2022
Mycobacterium ulcerans, the causative agent of Buruli ulcer disease, is unique among human pathogens in its capacity to produce mycolactone, a diffusible macrolide with immunosuppressive and cytotoxic properties. Recent studies have shown that mycolactone operates by inhibiting the host membrane translocation complex (Sec61), with an unprecedented potency compared to previously identified Sec61 blockers. Mycolactone binding to the pore-forming subunit of Sec61 inhibits its capacity to transport nascent secretory and membrane proteins into the endoplasmic reticulum, leading to their cytosolic degradation by the ubiquitin:proteasome system.
View Article and Find Full Text PDFMembrane proteins destined for lipid droplets (LDs), a major intracellular storage site for neutral lipids, are inserted into the endoplasmic reticulum (ER) and then trafficked to LDs where they reside in a hairpin loop conformation. Here, we show that LD membrane proteins can be delivered to the ER either co- or post-translationally and that their membrane-embedded region specifies pathway selection. The co-translational route for LD membrane protein biogenesis is insensitive to a small molecule inhibitor of the Sec61 translocon, Ipomoeassin F, and instead relies on the ER membrane protein complex (EMC) for membrane insertion.
View Article and Find Full Text PDFThe heterotrimeric Sec61 complex is a major site for the biogenesis of transmembrane proteins (TMPs), accepting nascent TMP precursors that are targeted to the endoplasmic reticulum (ER) by the signal recognition particle (SRP). Unlike most single-spanning membrane proteins, the integration of type III TMPs is completely resistant to small molecule inhibitors of the Sec61 translocon. Using siRNA-mediated depletion of specific ER components, in combination with the potent Sec61 inhibitor ipomoeassin F (Ipom-F), we show that type III TMPs utilise a distinct pathway for membrane integration at the ER.
View Article and Find Full Text PDFThe Sec61 complex translocates nascent polypeptides into and across the membrane of the endoplasmic reticulum (ER), providing access to the secretory pathway. In this study, we show that Ipomoeassin-F (Ipom-F), a selective inhibitor of protein entry into the ER lumen, blocks the in vitro translocation of certain secretory proteins and ER lumenal folding factors whilst barely affecting others such as albumin. The effects of Ipom-F on protein secretion from HepG2 cells are twofold: reduced ER translocation combined, in some cases, with defective ER lumenal folding.
View Article and Find Full Text PDFThe Sec61 complex is the major protein translocation channel of the endoplasmic reticulum (ER), where it plays a central role in the biogenesis of membrane and secretory proteins. Whilst Sec61-mediated protein translocation is typically coupled to polypeptide synthesis, suggestive of significant complexity, an obvious characteristic of this core translocation machinery is its surprising simplicity. Over thirty years after its initial discovery, we now understand that the Sec61 complex is in fact the central piece of an elaborate jigsaw puzzle, which can be partly solved using new research findings.
View Article and Find Full Text PDFIn order to produce proteins essential for their propagation, many pathogenic human viruses, including SARS-CoV-2, the causative agent of COVID-19 respiratory disease, commandeer host biosynthetic machineries and mechanisms. Three major structural proteins, the spike, envelope and membrane proteins, are amongst several SARS-CoV-2 components synthesised at the endoplasmic reticulum (ER) of infected human cells prior to the assembly of new viral particles. Hence, the inhibition of membrane protein synthesis at the ER is an attractive strategy for reducing the pathogenicity of SARS-CoV-2 and other obligate viral pathogens.
View Article and Find Full Text PDFIn order to produce proteins essential for their propagation, many pathogenic human viruses, including SARS-CoV-2 the causative agent of COVID-19 respiratory disease, commandeer host biosynthetic machineries and mechanisms. Three major structural proteins, the spike, envelope and membrane proteins, are amongst several SARS-CoV-2 components synthesised at the endoplasmic reticulum (ER) of infected human cells prior to the assembly of new viral particles. Hence, the inhibition of membrane protein synthesis at the ER is an attractive strategy for reducing the pathogenicity of SARS-CoV-2 and other obligate viral pathogens.
View Article and Find Full Text PDFTwo new ring-size-varying analogues ( and ) of ipomoeassin F were synthesized and evaluated. Improved cytotoxicity (IC: from 1.8 nM) and in vitro protein translocation inhibition (IC: 35 nM) derived from ring expansion imply that the binding pocket of Sec61α (isoform 1) can accommodate further structural modifications, likely in the fatty acid portion.
View Article and Find Full Text PDFSmall membrane proteins represent a largely unexplored yet abundant class of proteins in pro- and eukaryotes. They essentially consist of a single transmembrane domain and are associated with stress response mechanisms in bacteria. How these proteins are inserted into the bacterial membrane is unknown.
View Article and Find Full Text PDFEeyarestatin 1 (ES1) is an inhibitor of endoplasmic reticulum (ER) associated protein degradation, Sec61-dependent Ca homeostasis and protein translocation into the ER. Recently, evidence was presented showing that a smaller analog of ES1, ES24, targets the Sec61-translocon, and captures it in an open conformation that is translocation-incompetent. We now show that ES24 impairs protein secretion and membrane protein insertion in Escherichia coli via the homologous SecYEG-translocon.
View Article and Find Full Text PDFAntibodies to the Vel blood group antigen can cause adverse hemolytic reactions unless Vel-negative blood units are transfused. Since the genetic background of Vel-negativity was discovered in 2013, DNA-based typing of the 17-bp deletion causing the phenotype has facilitated identification of Vel-negative blood donors. SMIM1, the gene underlying Vel, encodes a 78-amino acid erythroid transmembrane protein of unknown function.
View Article and Find Full Text PDFThe Sec61 complex is the proteinaceous pore through which one-third of mammalian polypeptides access the lumen of the endoplasmic reticulum (ER) during their translocation across, or insertion into, the ER membrane. N-terminal ER signal peptides mediate polypeptide targeting to, and opening of, the Sec61 channel in a substrate-specific manner. Here, we discuss the recently defined features of ER signal peptides which necessitate the use of the accessory components Sec62 and Sec63 during the Sec61-mediated cotranslational translocation of newly synthesized secretory proteins.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is a major site for membrane protein synthesis in eukaryotes. The majority of integral membrane proteins are delivered to the ER membrane via the co-translational, signal recognition particle (SRP)-dependent route. However, tail-anchored proteins employ an alternative, post-translational route(s) that relies on distinct factors such as a cytosolic protein quality control component, SGTA.
View Article and Find Full Text PDFTail-anchored membrane proteins (TAMPs) are a distinct subset of inner membrane proteins (IMPs) characterized by a single C-terminal transmembrane domain (TMD) that is responsible for both targeting and anchoring. Little is known about the routing of TAMPs in bacteria. Here, we have investigated the role of TMD hydrophobicity in tail-anchor function in and its influence on the choice of targeting/insertion pathway.
View Article and Find Full Text PDFIpomoeassin F is a potent natural cytotoxin that inhibits growth of many tumor cell lines with single-digit nanomolar potency. However, its biological and pharmacological properties have remained largely unexplored. Building upon our earlier achievements in total synthesis and medicinal chemistry, we used chemical proteomics to identify Sec61α (protein transport protein Sec61 subunit alpha isoform 1), the pore-forming subunit of the Sec61 protein translocon, as a direct binding partner of ipomoeassin F in living cells.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) contains both α-glucosidases and α-mannosidases which process the N-linked oligosaccharides of newly synthesized glycoproteins and thereby facilitate polypeptide folding and glycoprotein quality control. By acting as structural mimetics, iminosugars can selectively inhibit these ER localized α-glycosidases, preventing N-glycan trimming and providing a molecular basis for their therapeutic applications. In this study, we investigate the effects of a panel of nine iminosugars on the actions of ER luminal α-glucosidase I and α-glucosidase II.
View Article and Find Full Text PDFEeyarestatin 1 (ES1) inhibits p97-dependent protein degradation, Sec61-dependent protein translocation into the endoplasmic reticulum (ER), and vesicular transport within the endomembrane system. Here, we show that ES1 impairs Ca homeostasis by enhancing the Ca leakage from mammalian ER. A comparison of various ES1 analogs suggested that the 5-nitrofuran (5-NF) ring of ES1 is crucial for this effect.
View Article and Find Full Text PDFBackground: Liposomes are employed as drug delivery vehicles offering a beneficial pharmacokinetic/distribution mechanism for in vivo therapeutics. Therapeutic liposomes can be designed to target specific cell types through the display of epitope-specific targeting peptides on their surface. The majority of peptides are currently attached by chemical modification of lipid constituents.
View Article and Find Full Text PDFInfection with Mycobacterium ulcerans results in a necrotising skin disease known as a Buruli ulcer, the pathology of which is directly linked to the bacterial production of the toxin mycolactone. Recent studies have identified the protein translocation machinery of the endoplasmic reticulum (ER) membrane as the primary cellular target of mycolactone, and shown that the toxin binds to the core subunit of the Sec61 complex. Mycolactone binding strongly inhibits the capacity of the Sec61 translocon to transport newly synthesised membrane and secretory proteins into and across the ER membrane.
View Article and Find Full Text PDF