Publications by authors named "Stephen Hann"

Biomass composition is an important input for genome-scale metabolic models and has a big impact on their predictive capabilities. However, researchers often rely on generic data for biomass composition, e.g.

View Article and Find Full Text PDF

The accurate and precise analysis of isotopologue and tandem mass isotopologue ratios in heavy stable isotope labeling experiments is a critical part of assessing absolute intracellular metabolic fluxes. Resulting from feeding the organism of interest with a specifically isotope-labeled substrate, the principal characteristics of these labeling experiments are the metabolites' non-naturally distributed isotopologue patterns. For the purpose of inferring metabolic rates by maximizing the fit between a priori simulated and experimentally obtained labeling patterns, C is the preferred stable isotope of use.

View Article and Find Full Text PDF

MYC is a transcription factor that is essential for cellular proliferation and development. Deregulation or overexpression of MYC occurs in a variety of human cancers. Ectopic expression of MYC causes hyperproliferation and transformation of cells in culture and tumorigenesis in several transgenic mouse models.

View Article and Find Full Text PDF

Screens for small-molecule modulators of biological pathways typically utilize cultured cell lines, purified proteins, or, recently, model organisms (e.g., zebrafish, Drosophila, C.

View Article and Find Full Text PDF

Purpose: To test the hypothesis that small molecule targeting of nucleophosmin 1 (NPM1) represents a rational approach for radiosensitization.

Methods And Materials: Wilde-type and NPM1-deficient mouse embryo fibroblasts (MEFs) were used to determine whether radiosensitization produced by the small molecule YTR107 was NPM1 dependent. The stress response to ionizing radiation was assessed by quantifying pNPM1, γH2AX, and Rad51 foci, neutral comet tail moment, and colony formation.

View Article and Find Full Text PDF

The transcription factor MYC has fundamental roles in proliferation, apoptosis, tumorigenesis, and stem cell pluripotency. Over the last 30 years extensive information has been gathered on the numerous cofactors that interact with MYC and the target genes that are regulated by MYC as a means of understanding the molecular mechanisms controlling its diverse roles. Despite significant advances and perhaps because the amount of information learned about MYC is overwhelming, there has been little consensus on the molecular functions of MYC that mediate its critical biological roles.

View Article and Find Full Text PDF

The oncogenic transcription factor c-Myc causes transformation and tumorigenesis, but it can also induce apoptotic cell death. Although tumor suppressors are necessary for c-Myc to induce apoptosis, the pathways and mechanisms are unclear. To further understand how c-Myc switches from an oncogenic protein to an apoptotic protein, we examined the mechanism of p53-independent c-Myc-induced apoptosis.

View Article and Find Full Text PDF

The antiapoptotic Bcl-2 family member Mcl-1 is a PEST protein (containing sequences enriched in proline, glutamic acid, serine, and threonine) and is subject to rapid degradation via multiple pathways. Impaired degradation leading to the maintenance of Mcl-1 expression is an important determinant of drug resistance in cancer. Phosphorylation at Thr 163 in the PEST region, stimulated by 12-O-tetradecanoylphorbol acetic acid (TPA)-induced activation of extracellular signal-regulated kinase (ERK), is associated with Mcl-1 stabilization in BL41-3 Burkitt lymphoma cells.

View Article and Find Full Text PDF

c-Myc is frequently deregulated in human cancers. Although deregulated c-Myc leads to tumor growth, it also triggers apoptosis in partnership with tumor suppressors such as ARF and p53. Apoptosis induced by c-Myc is a critical fail-safe mechanism for the cell to protect against unrestrained proliferation.

View Article and Find Full Text PDF

The multifunctional nucleolar proteins, nucleophosmin (NPM) and the tumor suppressor ARF, have been assigned numerous roles in diverse cellular processes impacting cellular proliferation, tumorigenesis and apoptosis. In addition, both proteins have been linked to the oncogenic function of c-Myc, a transcription factor that drives the majority of human cancers. Both proteins are induced by oncogenic c-Myc, but have opposing outcomes.

View Article and Find Full Text PDF

The transcription factor c-Myc is essential for cellular proliferation and is one of the most frequently activated oncogenes, but the molecular mechanism mediating its critical role in transformation is unclear. Like c-Myc, multifunctional nucleophosmin (NPM) is tightly regulated during proliferation and is overexpressed in several different types of cancer. Overexpression of NPM enhances proliferation and oncogene-mediated transformation, but the mechanism mediating these effects is unknown.

View Article and Find Full Text PDF

The p27(Kip1) (p27) cyclin-dependent kinase inhibitor and c-Myc oncoprotein play essential roles in control of cell cycle progression and apoptosis. Induction of p27 (CDKN1B) gene transcription by Forkhead box O proteins such as FOXO3a leads to growth arrest and apoptosis. Previously, we observed that B cell receptor (surface IgM) engagement of WEHI 231 immature B lymphoma cells with an anti-IgM antibody results in activation of FOXO3a, growth arrest and apoptosis.

View Article and Find Full Text PDF

The Myc proteins play a central role in cellular proliferation, differentiation, apoptosis and tumorigenesis. Although it is clear that multiple molecular mechanisms mediate these functions, it is unclear how individual mechanisms contribute and if different mechanisms work in concert or separately in mediating the diverse biological functions of c-Myc. Similarly, the role of post-translational modifications in regulating c-Myc molecular and biological properties has remained uncertain, despite over 20 years of research.

View Article and Find Full Text PDF

The c-myc oncoprotein plays a critical role in the regulation of cellular proliferation and apoptosis. To mediate these biological functions, a variety of target genes are activated or repressed by c-myc, but few genes have yet been identified that directly mediate c-myc's role in proliferation or apoptosis. During a screen for genes that are repressed by c-myc, we identified the alpha1 subunit of gamma aminobutyric acid receptor (GABAAR-alpha1) as a novel target of c-myc.

View Article and Find Full Text PDF

The Cres (cystatin-related epididymal spermatogenic) gene encodes the defining member of a new subgroup within the family 2 cystatins of cysteine protease inhibitors. Cres expression is highly tissue- and cell-specific, with messenger RNA (mRNA) present in the testicular round/elongating spermatids, proximal caput epididymal epithelium, gonadotroph cells in the anterior pituitary gland, and corpus luteum of the ovary. To begin to elucidate the molecular mechanisms controlling the tissue- and cell-specific expression of the Cres gene, transgenic mice were generated containing 1.

View Article and Find Full Text PDF

The ARF tumor suppressor protein acts in a checkpoint that guards against unscheduled cellular proliferation in response to oncogenic signaling. Deregulated expression of c-Myc induces ARF expression and apoptosis through the ARF-Mdm2-p53 axis. Our recent study reveals a new direct role for ARF in controlling c-Myc's oncogenic activity that is independent of p53.

View Article and Find Full Text PDF

Increased expression of the oncogenic transcription factor c-Myc causes unregulated cell cycle progression. c-Myc can also cause apoptosis, but it is not known whether the activation and/or repression of c-Myc target genes mediates these diverse functions of c-Myc. Because unchecked cell cycle progression leads to hyperproliferation and tumorigenesis, it is essential for tumour suppressors, such as p53 and p19ARF (ARF), to curb cell cycle progression in response to increased c-Myc (refs 2, 3).

View Article and Find Full Text PDF

BCL2 family members are subject to regulation at multiple levels, providing checks on their ability to contribute to tumorigenesis. However, findings on post-translational BCL2 phosphorylation in different systems have been difficult to integrate. Another antiapoptotic family member, MCL1, exhibits a difference in electrophoretic mobility upon phosphorylation induced by an activator of PKC (12-O-tetradecanoylphorbol 13-acetate; TPA) versus agents that act on microtubules or protein phosphatases 1/2A.

View Article and Find Full Text PDF

The c-Myc protein is a transcription factor that is a central regulator of cell growth and proliferation. Thr-58 is a major phosphorylation site in c-Myc and is a mutational hotspot in Burkitt's and other aggressive human lymphomas, indicating that Thr-58 phosphorylation restricts the oncogenic potential of c-Myc. Mutation of Thr-58 is also associated with increased c-Myc protein stability.

View Article and Find Full Text PDF