Modern herpetoculture has seen a rise in welfare-related habitat modifications, although ethologically-informed enclosure design and evidence-based husbandry are lacking. The diversity that exists within snakes complicates standardizing snake welfare assessment tools and evaluation techniques. Utilizing behavioral indicators in conjunction with physiological measures, such as fecal glucocorticoid metabolite concentrations, could aid in the validation of evidence-based metrics for evaluating snake welfare.
View Article and Find Full Text PDFIn this study, we demonstrate successful development of a predictive model that detects both the fuel-air equivalence ratio (ϕ) and local pressure prior to plasma formation via machine-learning from the laser-induced plasma spectra; the resulting model enables measurement of a wide range of fuel concentrations and pressures. The process of model acquisition is composed of three steps: (i) normalization of the spectra, (ii) feature extraction and selection, and (iii) training of an artificial neural network (ANN) with feature scores and the corresponding labels. In detail, the spectra were first normalized by the total emission intensity; then principal component analysis (PCA) or independent component analysis (ICA) was carried out for feature extraction and selection.
View Article and Find Full Text PDFPlanar laser-induced fluorescence (PLIF) of hydroxyl (OH) and formaldehyde (CHO) radicals was performed alongside stereo particle image velocimetry (PIV) at a 20 kHz repetition rate in a highly turbulent Bunsen flame. A dual-pulse burst-mode laser generated envelopes of 532 nm pulse pairs for PIV as well as a pair of 355 nm pulses, the first of which was used for CHO PLIF. A diode-pumped solid-state Nd:YAG/dye laser system produced the excitation beam for the OH PLIF.
View Article and Find Full Text PDFThis Letter reports the first direct comparison between two-dimensional (2D) and three-dimensional (3D) laser-induced fluorescence (LIF) applied to highly turbulent flames, with the goal of experimentally illustrating the capabilities and limitations of volumetric LIF (VLIF). To accomplish these goals, planar LIF (PLIF) and VLIF measurements were simultaneously performed on turbulent flames based on the CH radical. The PLIF measurements imaged a planar cross-section of the target flames across a 2D field-of-view (FOV) of 42 mm×42 mm.
View Article and Find Full Text PDFThe goal of this work was to contrast and compare the 2D and 3D flame topography of a turbulent flame. The 2D measurements were obtained using CH-based (methylidyne radical-based) planar laser-induced fluorescence (PLIF), and the 3D measurements were obtained through a tomographic chemiluminescence (TC) technique. Both PLIF and TC were performed simultaneously on a turbulent premixed Bunsen flame.
View Article and Find Full Text PDFThis study demonstrates high-repetition-rate planar laser-induced fluorescence (PLIF) imaging of hydroxyl radicals (OH) in flames at a continuous framing rate of 50 kHz. A frequency-doubled dye laser is pumped by the second harmonic of an Nd:YAG laser to generate laser radiation near 283 nm with a pulse width of 8 ns and rate of 50 kHz. Fluorescence is recorded by a two-stage image intensifier and complementary metal-oxide-semiconductor camera.
View Article and Find Full Text PDFThis study demonstrates high-repetition-rate planar laser-induced fluorescence (PLIF) imaging of both cold (~300 K) and hot (~2400 K) nitric oxide (NO) at a framing rate of 10 kHz. The laser system is composed of a frequency-doubled dye laser pumped by the third harmonic of a 10 kHz Nd:YAG laser to generate continuously pulsed laser radiation at 226 nm for excitation of NO. The laser-induced fluorescence signal is detected using a high-frame rate, intensified CMOS camera, yielding a continuous cinematographic propagation of the NO plume where data acquisition duration is limited only by camera memory.
View Article and Find Full Text PDFPhysiol Biochem Zool
September 2003
Basking by ectothermic vertebrates is thought to have evolved for thermoregulation. However, another beneficial effect of sunlight exposure, specifically the ultraviolet B (UV-B) component, includes endogenous production of vitamin D(3). In the laboratory, panther chameleons exhibited a positive phototaxis to greater visible, ultraviolet A (UV-A) and UV-B light.
View Article and Find Full Text PDF