A model for intermediate-depth earthquakes of subduction zones is evaluated based on shear localization, shear heating, and runaway creep within thin carbonate layers in an altered downgoing oceanic plate and the overlying mantle wedge. Thermal shear instabilities in carbonate lenses add to potential mechanisms for intermediate-depth seismicity, which are based on serpentine dehydration and embrittlement of altered slabs or viscous shear instabilities in narrow fine-grained olivine shear zones. Peridotites in subducting plates and the overlying mantle wedge may be altered by reactions with CO-bearing fluids sourced from seawater or the deep mantle, to form carbonate minerals, in addition to hydrous silicates.
View Article and Find Full Text PDFThe composition of methane hydrate, namely n(w) for CH4.n(w)H2O, was directly measured along the hydrate equilibrium boundary under conditions of excess methane gas. Pressure and temperature conditions ranged from 1.
View Article and Find Full Text PDFUsing the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within +/-2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K.
View Article and Find Full Text PDFRheological experiments on fine-grained water ice II at low strain rates reveal a creep mechanism that dominates at conditions of low stress. Using cryogenic scanning electron microscopy, we observed that a change in stress exponent from 5 to 2.5 correlates strongly with a decrease in grain size from about 40 to 6 micrometers.
View Article and Find Full Text PDF