Publications by authors named "Stephen Gaughran"

Article Synopsis
  • Galapagos giant tortoises, found only in the Galapagos Archipelago, exhibit distinct morphological, behavioral, and genetic traits, prompting debate over their classification as separate species due to recent divergences in their populations.
  • A study using advanced genetic methods on 38 tortoises revealed strong evidence against treating all tortoises as a single species; instead, it suggests a complex with at least 9 to potentially 13 distinct species.
  • The findings highlight varying levels of speciation, with some tortoise groups being further evolved as separate species than others, underscoring the urgency of conservation efforts for threatened island species.
View Article and Find Full Text PDF

The distribution and movement of species, broadly known as biogeography, is one of the fundamental subfields of ecology and evolutionary biology. However, significant mysteries remain about the processes that gave rise to the modern distribution of biodiversity across the globe. Over the last several decades, the genetic study of ancient and subfossil specimens has started to shed light on past migrations of some species, with a particular focus on humans and megafauna.

View Article and Find Full Text PDF

Coyotes are ubiquitous on the North American landscape as a result of their recent expansion across the continent. They have been documented in the heart of some of the most urbanized cities, such as Chicago, Los Angeles, and New York City. Here, we explored the genomic composition of 16 coyotes in the New York metropolitan area to investigate genomic demography and admixture for urban-dwelling canids in Queens County, New York.

View Article and Find Full Text PDF

The Hawaiian monk seal (HMS) is the single extant species of tropical earless seals of the genus The species survived a severe bottleneck in the late 19th century and experienced subsequent population declines until becoming the subject of a NOAA-led species recovery effort beginning in 1976 when the population was fewer than 1000 animals. Like other recovering species, the Hawaiian monk seal has been reported to have reduced genetic heterogeneity due to the bottleneck and subsequent inbreeding. Here, we report a chromosomal reference assembly for a male animal produced using a variety of methods.

View Article and Find Full Text PDF

The status of the Fernandina Island Galapagos giant tortoise (Chelonoidis phantasticus) has been a mystery, with the species known from a single specimen collected in 1906. The discovery in 2019 of a female tortoise living on the island provided the opportunity to determine if the species lives on. By sequencing the genomes of both individuals and comparing them to all living species of Galapagos giant tortoises, here we show that the two known Fernandina tortoises are from the same lineage and distinct from all others.

View Article and Find Full Text PDF

Whole genome sequencing provides deep insights into the evolutionary history of a species, including patterns of diversity, signals of selection, and historical demography. When applied to closely related taxa with a wealth of background knowledge, population genomics provides a comparative context for interpreting population genetic summary statistics and comparing empirical results with the expectations of population genetic theory. The Galapagos giant tortoises (Chelonoidis spp.

View Article and Find Full Text PDF

The Mediterranean monk seal (Monachus monachus) is a flagship species for marine conservation, but important aspects of its life history remain unknown. Concerns over imminent extinction motivated a nuclear DNA study of the species in its largest continuous subpopulation in the eastern Mediterranean Sea. Despite recent evidence of partial subpopulation recovery, we demonstrate that there is no reason for complacency, as the species still shares several traits that are characteristic of a critically endangered species: Mediterranean monk seals in the eastern Mediterranean survive in three isolated and genetically depauperate population clusters, with small effective population sizes and high levels of inbreeding.

View Article and Find Full Text PDF

Giant tortoises are among the longest-lived vertebrate animals and, as such, provide an excellent model to study traits like longevity and age-related diseases. However, genomic and molecular evolutionary information on giant tortoises is scarce. Here, we describe a global analysis of the genomes of Lonesome George-the iconic last member of Chelonoidis abingdonii-and the Aldabra giant tortoise (Aldabrachelys gigantea).

View Article and Find Full Text PDF

High-throughput DNA sequencing allows efficient discovery of thousands of single nucleotide polymorphisms (SNPs) in nonmodel species. Population genetic theory predicts that this large number of independent markers should provide detailed insights into population structure, even when only a few individuals are sampled. Still, sampling design can have a strong impact on such inferences.

View Article and Find Full Text PDF

Elephants have significantly reduced their risk of cancer by duplicating an important gene called .

View Article and Find Full Text PDF

Population connectivity and spatial distribution are fundamentally related to ecology, evolution and behaviour. Here, we combined powerful genetic analysis with simulations of particle dispersal in a high-resolution ocean circulation model to investigate the distribution of green turtles foraging at the remote Palmyra Atoll National Wildlife Refuge, central Pacific. We analysed mitochondrial sequences from turtles (n = 349) collected there over 5 years (2008-2012).

View Article and Find Full Text PDF