Herein is reported a new type of transparent electrode, prepared by depositing a thin layer of amorphous silicon film on indium tin oxide, which enables photoswitchable electrochemistry and optical imaging to be performed simultaneously. This offers the opportunity to visualise a spatially controlled electrochemical event on an unstructured electrode surface.
View Article and Find Full Text PDFLight can be used to spatially resolve electrochemical measurements on a semiconductor electrode. This phenomenon has been explored to detect DNA hybridization with light-addressable potentiometric sensors and, more recently, with light-addressable amperometric sensors based on organic-monolayer-protected Si(100). Here, a contribution to the field is presented by comparing sensing performances when bovine serum albumin (BSA) and hexaethylene glycol (OEG) are employed as antifouling layers that resist nonspecific adsorption to the DNA-modified interface on Si(100) devices.
View Article and Find Full Text PDFFor many normal and aberrant cell behaviours, it is important to understand the origin of cellular heterogeneity. Although powerful methods for studying cell heterogeneity have emerged, they are more suitable for common rather than rare cells. Exploring the heterogeneity of rare single cells is challenging because these rare cells must be first pre-concentrated and undergo analysis prior to classification and expansion.
View Article and Find Full Text PDFHerein, we report a facile fabrication of a polymer (azobenzene and α-cyclodextrin-functionalized hyaluronic acid) and gold nanobipyramids (AuNBs) conjugated mesoporous silica nanoparticles (MSNs) to be used as an injectable drug delivery system for sustained cancer treatment. Because of the specific affinity between the hyaluronic acid (HA) on MSNs and the CD44 antigen overexpressed on tumor cells, the MSNs can selectively attach to tumor cells. The nanocomposite material then exploits thermoresponsive interactions between α-cyclodextrin and azobenzene, and the photothermal properties of gold nanobipyramids, to in situ self-assemble into a hydrogel under near-infrared (NIR) radiation.
View Article and Find Full Text PDFControlling the composition of an interface is very important in tuning the chemical and physical properties of a surface in many applications including biosensors, biomaterials, and chemical catalysis. Frequently, this requires one molecular component to a minor component in a mixed layer. Such subtle control of composition has been difficult to achieve using aryldiazonium salts.
View Article and Find Full Text PDFHerein we show the development of biointerfaces on indium-tin oxide (ITO) surfaces prepared from organophosphonate self-assembled monolayers. The interfaces were prepared in a stepwise fabrication procedure containing a base monolayer modified with oligo(ethylene oxide) species to which biological recognition ligands were attached. The density of ligands was controlled by varying the ratio of two oligo(ethylene oxide) species such that only one is compatible with further coupling.
View Article and Find Full Text PDFTwo different interfaces prepared via UV-hydrosilylation of undecylenic acid and 1,8-nonadiyne on silicon(111) have been explored to develop a robust electrochemical DNA sensor. Electrodes modified with undecylenic acid were found to stably immobilise DNA but could not resist the growth of insulating oxides, whereas 1,8-nonadiyne modified electrodes satisfy both requirements.
View Article and Find Full Text PDFPorous silicon (PSi) rugate filters modified with alkyne-terminated monolayers were chemically patterned using a combination of photolithography of photoresist and click chemistry. Two chemical functionalities were obtained by conjugating, click reactions, ethylene glycol moieties containing two different terminal groups to discrete areas towards the exterior of a PSi rugate filter. The patterning of biological species to the functionalized surface was demonstrated through the conjugation of fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA).
View Article and Find Full Text PDFSurfaces with a well-defined presentation of ligands for receptors on the cell membrane can serve as models of the extracellular matrix for studying cell adhesion or as model cell surfaces for exploring cell-cell contacts. Because such surfaces can provide exquisite control over, for example, the density of these ligands or when the ligands are presented to the cell, they provide a very precise strategy for understanding the mechanisms by which cells respond to external adhesive cues. In the present feature article, we present an overview of the basic biology of cell adhesion before discussing surfaces that have a static presentation of immobile ligands.
View Article and Find Full Text PDFHerein, we demonstrate the use of modified gold-coated magnetic nanoparticles as 'dispersible electrodes' which act as selective capture vehicles for electrochemical detection of prostate-specific antigen (PSA). A key advantage of this system is the ability to quantify non-electrochemical active analytes such as proteins with unprecedented detection limits and fast response times.
View Article and Find Full Text PDFWe report herein the development of a highly robust, quantitative, sensitive, and naked eye colorimetric detection method for different isomers of aromatic compounds using β-CD-modified silver nanoparticle (AgNPs) probes. This assay relies on the distance-dependent optical properties of Ag nanoparticles and the different inclusion binding strength of the aromatic guests to β-CD host. In the presence of different isomers of aromatic compounds, AgNPs could be rapidly induced to aggregate, thereby resulting in apricot-to-red color change.
View Article and Find Full Text PDF