Flavodoxin (Fld) replaces Ferredoxin (Fd) as electron carrier from Photosystem I (PSI) to Ferredoxin-NADP(+) reductase (FNR). A number of Anabaena Fld (AnFld) variants with replacements at the interaction surface with FNR and PSI indicated that neither polar nor hydrophobic residues resulted critical for the interactions, particularly with FNR. This suggests that the solvent exposed benzenoid surface of the Fld FMN cofactor might contribute to it.
View Article and Find Full Text PDFContribution of three regions (phosphate-binding, 50's and 90's loops) of Anabaena apoflavodoxin to FMN binding and reduction potential was studied. Thr12 and Glu16 did not influence FMN redox properties, but Thr12 played a role in FMN binding. Replacement of Trp57 with Glu, Lys or Arg moderately shifted E(ox/sq) and E(sq/hq) and altered the energetic of the FMN redox states binding profile.
View Article and Find Full Text PDFFlavoredoxin participates in Desulfovibrio gigas thiosulfate reduction pathway. Its 3-dimensional model was generated allowing the oxidized riboflavin-5'-phosphate (FMN) site to be predicted. Residues likely to be involved in FMN-binding were identified (N29, W35, T56, K92, H131 and F164) and mutated to alanine.
View Article and Find Full Text PDFA novel acyl-CoA dehydrogenase that initiates beta-oxidation of the side chains of phenylacyl-CoA compounds by Pseudomonas putida was induced by growth with phenylhexanoate as carbon source. It was identified as the product of gene PP_0368, which was cloned and overexpressed in Escherichia coli. This phenylacyl-CoA dehydrogenase was found to be dimeric with a subunit molecular mass of 66 kDa, to contain FAD and to be active with phenylacyl-CoA substrates having side chains from four to at least 11 carbon atoms.
View Article and Find Full Text PDFThe photosynthetic bacterium Rhodobacter capsulatus contains a ferredoxin (flavodoxin)-NADP(H) oxidoreductase (FPR) that catalyzes electron transfer between NADP(H) and ferredoxin or flavodoxin. The structure of the enzyme, determined by X-ray crystallography, contains two domains harboring the FAD and NADP(H) binding sites, as is typical of the FPR structural family. The FAD molecule is in a hairpin conformation in which stacking interactions can be established between the dimethylisoalloxazine and adenine moieties.
View Article and Find Full Text PDFA gene (PP2216) that codes for an acyl-CoA dehydrogenase was cloned from Pseudomonas putida strain KT2240 and over-expressed in Escherichia coli, and the recombinant enzyme purified and characterised. The enzyme is tetrameric with one FAD per subunit of molecular mass 40,500 Da. An anaerobic titration with sodium dithionite showed that the enzyme accepts two electrons.
View Article and Find Full Text PDFFlavodoxins (Flds) are electron transfer proteins that carry a noncovalently bound flavin mononucleotide molecule (FMN) as a redox active center. A distinguishing feature of these flavoproteins is the dramatic change in the E(sq/rd) reduction potential of the FMN upon binding to the apoprotein (at pH 8.0, from -269 mV when free in solution to -438 mV in Anabaena Fld).
View Article and Find Full Text PDFHydrogen bonding plays a key role in the tight binding of the FMN cofactor and the regulation of its redox properties in flavodoxins. Hydrogen bonding interactions can be directly observed in solution by multidimensional heteronuclear NMR spectroscopy through the scalar couplings between donor and acceptor nuclei. Here we report on the detection of intermolecular trans-hydrogen-bond couplings ((h)J) between the flavin ring system and the backbone of Desulfovibrio vulgaris flavodoxin in the oxidized and the two-electron reduced states.
View Article and Find Full Text PDFThe catalytic mechanism proposed for ferredoxin-NADP(+) reductase (FNR) is initiated by reduction of its flavin adenine dinucleotide (FAD) cofactor by the obligatory one-electron carriers ferredoxin (Fd) or flavodoxin (Fld) in the presence of oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)). The C-terminal tyrosine of FNR, which stacks onto its flavin ring, modulates the enzyme affinity for NADP(+)/H, being removed from this stacking position during turnover to allow productive docking of the nicotinamide and hydride transfer. Due to its location at the substrate-binding site, this residue might also affect electron transfer between FNR and its protein partners.
View Article and Find Full Text PDFThe side chain of aspartate 95 in flavodoxin from Desulfovibrio vulgaris provides the closest negative charge to N(1) of the bound FMN in the protein. Site-directed mutagenesis was used to substitute alanine, asparagine, or glutamate for this amino acid to assess the effect of this charge on the semiquinone/hydroquinone redox potential (E(1)) of the FMN cofactor. The D95A mutation shifts the E(1) redox potential positively by 16 mV, while a negative shift of 23 mV occurs in the oxidized/semiquinone midpoint redox potential (E(2)).
View Article and Find Full Text PDFThe kinetics and thermodynamics of the urea-induced unfolding of flavodoxin and apoflavodoxin from Desulfovibrio vulgaris were investigated by measuring changes in flavin and protein fluorescence. The reaction of urea with flavodoxin is up to 5000 times slower than the reaction with the apoprotein (0.67 s(-1) in 3 m urea in 25 mm sodium phosphate at 25 degrees C), and it results in the dissociation of FMN.
View Article and Find Full Text PDF