The pathways by which synaptic vesicle proteins reach their destination are not completely defined. Here we investigated the traffic of a green fluorescent protein (GFP)-tagged version of the vesicular acetylcholine transporter (VAChT) in cholinergic SN56 cells, a model system for neuronal processing of this cargo. GFP-VAChT accumulates in small vesicular compartments in varicosities, but perturbation of endocytosis with a dominant negative mutant of dynamin I-K44A impaired GFP-VAChT trafficking to these processes.
View Article and Find Full Text PDFThe CYP2C subfamily metabolizes many clinically important drugs. These genes respond to prototypical inducers such as phenobarbital and rifampicin, yet little has been reported on the mechanisms of induction. This report examines the regulation of CYP2C9 with respect to two specific receptors thought to be involved in phenobarbital (PB) induction, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR).
View Article and Find Full Text PDFMetabotropic glutamate receptors (mGluRs) constitute an unique subclass of G protein-coupled receptors (GPCRs). These receptors are activated by the excitatory amino acid glutamate and play an essential role in regulating neural development and plasticity. In the present review, we overview the current understanding regarding the molecular mechanisms involved in the desensitization and endocytosis of Group 1 mGluRs as well as the relative contribution of desensitization to the spatial-temporal patterning of glutamate receptor signaling.
View Article and Find Full Text PDFbeta-Arrestins are important in chemoattractant receptor-induced granule release, a process that may involve Ral-dependent regulation of the actin cytoskeleton. We have identified the Ral GDP dissociation stimulator (Ral-GDS) as a beta-arrestin-binding protein by yeast two-hybrid screening and co-immunoprecipitation from human polymorphonuclear neutrophilic leukocytes (PMNs). Under basal conditions, Ral-GDS is localized to the cytosol and remains inactive in a complex formed with beta-arrestins.
View Article and Find Full Text PDFThe accepted paradigm for G protein-coupled receptor kinase (GRK)-mediated desensitization of G protein-coupled receptors involves GRK-mediated receptor phosphorylation followed by the binding of arrestin proteins. Although GRKs contribute to metabotropic glutamate receptor 1 (mGluR1) inactivation, beta-arrestins do not appear to be required for mGluR1 G protein uncoupling. Therefore, we investigated whether the phosphorylation of serine and threonine residues localized within the C terminus of mGluR1a is sufficient to allow GRK2-mediated attenuation of mGluR1a signaling.
View Article and Find Full Text PDFWe have investigated the intracellular traffic of PrP(c), a glycosylphosphatidylinositol (GPI)-anchored protein implicated in spongiform encephalopathies. A fluorescent functional green fluorescent protein (GFP)-tagged version of PrP(c) is found at the cell surface and in intracellular compartments in SN56 cells. Confocal microscopy and organelle-specific markers suggest that the protein is found in both the Golgi and the recycling endosomal compartment.
View Article and Find Full Text PDFTo make a direct biomechanical comparison between the sandblasted and acid-etched surface (SLA) and the machined and acid-etched surface (MA), a well-established animal model for implant removal torque testing was employed, using a split-mouth experimental design. All implants had an identical cylindrical solid-screw shape with the standard ITI thread configuration, without any macroscopic retentive structures. After 4, 8, and 12 weeks of bone healing, removal torque testing was performed to evaluate the interfacial shear strength of each surface type.
View Article and Find Full Text PDFPrevious studies have demonstrated that the internalization of the angiotensin II type 1A receptor (AT(1A)R) may be mediated by both beta-arrestin-sensitive and -insensitive mechanisms. Therefore, we have used the AT(1A)R carboxyl-terminal tail to screen a rat brain yeast two-hybrid expression library for novel AT(1A)R-interacting proteins that might contribute to the regulation of AT(1A)R internalization. We have identified Rab5a as an AT(1A)R-binding protein that selectively associates with the AT(1A)R and not with the beta2-adrenergic receptor.
View Article and Find Full Text PDF