J Histochem Cytochem
August 2023
The authors of the accompanying classic paper from the (Evanko SP, Wight TN. Intracellular Localization of Hyaluronan in Proliferating Cells. .
View Article and Find Full Text PDFThe content and organization of hyaluronan (HA) in the extracellular matrix (ECM) have been identified as strong indicators of inflammation in joint disease, although the source and role of HA as an effector of inflammation is not clear. In this study, we established co-cultures of activated human CD4 T cells with fibroblast-like synoviocytes (FLS) from osteoarthritis (OA) and rheumatoid arthritis (RA) subjects and examined the role of HA in promoting inflammatory events. Co-cultures of RA FLS with activated CD4 T cells generated an HA-enriched ECM that promoted enhanced monocyte adhesion compared to co-cultures of OA FLS with activated CD4 T cells.
View Article and Find Full Text PDFPurpose: Abnormal extracellular matrix (ECM) changes are correlated with stress urinary incontinence (SUI). The ECM components versican (Vcan) and hyaluronan (HA) play key roles in regulating tissue inflammation and maintaining connective tissue homeostasis. We analyzed the localization and expression of these ECM components in urethral and vaginal tissues from a rat model of urinary incontinence and from human clinical specimens.
View Article and Find Full Text PDFA coat of pericellular hyaluronan surrounds mature dendritic cells (DC) and contributes to cell-cell interactions. We asked whether 4-methylumbelliferone (4MU), an oral inhibitor of HA synthesis, could inhibit antigen presentation. We find that 4MU treatment reduces pericellular hyaluronan, destabilizes interactions between DC and T-cells, and prevents T-cell proliferation in vitro and in vivo.
View Article and Find Full Text PDFJ Histochem Cytochem
November 2020
Hyaluronan and proteoglycan link protein 1 (HAPLN1) stabilizes interactions between two important extracellular matrix (ECM) macromolecules, versican and hyaluronan, which facilitate proliferation of fibroblasts and their conversion to myofibroblasts. However, the role of HAPLN1 in these events has not been studied. Using immunocytochemistry, cellular and ECM locations of HAPLN1 were evaluated in cultured human lung fibroblasts during proliferation and conversion to myofibroblasts.
View Article and Find Full Text PDFThe extracellular matrix (ECM) proteoglycan, versican increases along with other ECM versican binding molecules such as hyaluronan, tumor necrosis factor stimulated gene-6 (TSG-6), and inter alpha trypsin inhibitor (IαI) during inflammation in a number of different diseases such as cardiovascular and lung disease, autoimmune diseases, and several different cancers. These interactions form stable scaffolds which can act as "landing strips" for inflammatory cells as they invade tissue from the circulation. The increase in versican is often coincident with the invasion of leukocytes early in the inflammatory process.
View Article and Find Full Text PDFVersican is a chondroitin sulfate proteoglycan found in the extracellular matrix that is important for changes in cell phenotype associated with development and disease. Versican has been shown to be involved in cardiovascular disorders, as well as lung disease and fibrosis, inflammatory bowel disease, cancer, and several other diseases that have an inflammatory component. Versican was first identified as a fibroblast proteoglycan and forms large multimolecular complexes with hyaluronan and other components of the provisional matrix during wound healing and inflammation.
View Article and Find Full Text PDFIn immunity and inflammation, T cells are often associated with stromal mesenchymal cells such as fibroblasts. Hyaluronan and proteins that associate with hyaluronan such as versican and tumor necrosis factor-inducible gene-6 (TSG-6) are extracellular matrix (ECM) components that promote leukocyte adhesion, accumulation, and activation. However, the factors responsible for producing this specialized ECM and its impact on inflammatory events are not well understood.
View Article and Find Full Text PDFViral infection is an exacerbating factor contributing to chronic airway diseases, such as asthma, via mechanisms that are still unclear. Polyinosine-polycytidylic acid (poly(I:C)), a Toll-like receptor 3 (TLR3) agonist used as a mimetic to study viral infection, has been shown to elicit inflammatory responses in lungs and to exacerbate pulmonary allergic reactions in animal models. Previously, we have shown that poly(I:C) stimulates lung fibroblasts to accumulate an extracellular matrix (ECM), enriched in hyaluronan (HA) and its binding partner versican, which promotes monocyte adhesion.
View Article and Find Full Text PDFInterleukin-6 (IL-6) is a key pathogenic cytokine in multiple autoimmune diseases including rheumatoid arthritis and multiple sclerosis, suggesting that dysregulation of the IL-6 pathway may be a common feature of autoimmunity. The role of IL-6 in type 1 diabetes (T1D) is not well understood. We show that signal transducer and activator of transcription 3 (STAT3) and STAT1 responses to IL-6 are significantly enhanced in CD4 and CD8 T cells from individuals with T1D compared to healthy controls.
View Article and Find Full Text PDFVariants of versican have wide-ranging effects on cell and tissue phenotype, impacting proliferation, adhesion, pericellular matrix composition, and elastogenesis. The G1 domain of versican, which contains two Link modules that bind to hyaluronan (HA), may be central to these effects. Recombinant human G1 (rhG1) with an N-terminal 8 amino acid histidine (His) tag, produced in Nicotiana benthamiana, was applied to cultures of dermal fibroblasts, and effects on proliferation and pericellular HA organization determined.
View Article and Find Full Text PDFBiofilms-communities of bacteria encased in a polymer-rich matrix-confer bacteria with the ability to persist in pathologic host contexts, such as the cystic fibrosis (CF) airways. How bacteria assemble polymers into biofilms is largely unknown. We find that the extracellular matrix produced by Pseudomonas aeruginosa self-assembles into a liquid crystal through entropic interactions between polymers and filamentous Pf bacteriophages, which are long, negatively charged filaments.
View Article and Find Full Text PDFThe contribution of hyaluronan-dependent pericellular matrix to TGF-β1-driven induction and maintenance of myofibroblasts is not understood. Hyaluronan is an extracellular matrix (ECM) glycosaminoglycan important in cell adhesion, proliferation and migration, and is implicated in myofibroblast formation and maintenance. Reduced turnover of hyaluronan has been linked to differentiation of myofibroblasts and potentiation of lung fibrosis.
View Article and Find Full Text PDFBackground: Versican is an extracellular matrix (ECM) proteoglycan that is present in the pericellular environment of most tissues and increases in many different diseases. Versican interacts with cells to influence the ability of cells to proliferate, migrate, adhere and assemble an ECM.
Scope Of Review: The structure of the versican molecule is briefly reviewed and studies highlighting those factors that promote versican synthesis and degradation and their impact on cell phenotype in disease are discussed.
The ability of lymphocytes to migrate freely through connective tissues is vital to efficient immune function. How the extracellular matrix (ECM) may affect T-cell adhesion and migration is not well understood. We have examined the adhesion and migration of activated human T-lymphocytes on ECM made by fibroblast-like synoviocytes and lung fibroblasts.
View Article and Find Full Text PDFObjectives: The protein components of low-density lipoprotein (LDL), oxidized LDL and proteoglycans such as versican contain tryptophan, an amino acid with characteristic fluorescence features at 308 nm excitation wavelength. We hypothesize that intrinsic fluorescence spectroscopy at 308 nm excitation wavelength IFS308, a method suitable for clinical use, can identify coronary artery lesions with superficial foam cells (SFCs) and/or proteoglycans.
Methods: We subjected 119 human coronary artery specimens to in vitro fluorescence and reflectance spectroscopy.
Atherosclerosis is accelerated in the setting of diabetes, but the factors driving this phenomenon remain elusive. Hyperglycemia leads to elevated levels of transforming growth factor (TGF)-β and TGF-β has been implicated as a factor in atherosclerosis. Given the established association between hyperglycemia and elevated TGF-β, it is plausible that elevated TGF-β levels in diabetes play a pathogenic role in the development of accelerated atherosclerosis.
View Article and Find Full Text PDFHyaluronan (HA) production by dendritic cells (DCs) is known to promote antigen presentation and to augment T-cell activation and proliferation. We hypothesized that pericellular HA can function as intercellular 'glue' directly mediating T cell-DC binding. Using primary human cells, we observed HA-dependent binding between T cells and DCs, which was abrogated upon pre-treatment of the DCs with 4-methylumbelliferone (4-MU), an agent which blocks HA synthesis.
View Article and Find Full Text PDFViral infections are known to exacerbate asthma and other lung diseases in which chronic inflammatory processes are implicated, but the mechanism is not well understood. The viral mimetic, polyinosine-polycytidylic acid, causes accumulation of a versican- and hyaluronan-enriched extracellular matrix (ECM) by human lung fibroblasts with increased capacity for monocyte adhesion. The fivefold increase in versican retention in this ECM is due to altered compartmentalization, with decreased degradation of cell layer-associated versican, rather than an increase in total accumulation in the culture.
View Article and Find Full Text PDFWork by our group and others has demonstrated a role for the extracellular matrix receptor CD44 and its ligand hyaluronan in CD4(+)CD25(+) regulatory T cell (Treg) function. Herein, we explore the mechanistic basis for this observation. Using mouse FoxP3/GFP(+) Treg, we find that CD44 costimulation promotes expression of FoxP3, in part through production of IL-2.
View Article and Find Full Text PDFWe have examined structural details of hyaluronan- and versican-rich pericellular matrices in human lung fibroblasts, as well as fixation effects after treatment with the viral mimetic, poly I:C. Lateral aggregation of hyaluronan chains was promoted by acid-ethanol-formalin fixation compared with a network appearance with formalin alone. However, hyaluronidase-sensitive cable structures were seen in live cells, suggesting that they are not a fixation artifact.
View Article and Find Full Text PDFBackground: Proteoglycans, a complex group of extracellular matrix (ECM) molecules, are elevated in benign prostatic hyperplasia (BPH). Versican is a stromal proteoglycan present in prostate tissue. Versican expression is elevated in tissues with increased proliferation.
View Article and Find Full Text PDFPPAR ligands are important effectors of energy metabolism and can modify proteoglycan synthesis by vascular smooth muscle cells (VSMCs). Describing the cell biology of these important clinical agents is important for understanding their full clinical potential, including toxicity. Troglitazone (10 microM) and fenofibrate (30 microM) treatment of VSMCs reduces ((35)S)-sulphate incorporation into proteoglycans due to a reduction of glycosaminoglycan (GAG) chain length.
View Article and Find Full Text PDFHyaluronan is a multifunctional glycosaminoglycan that forms the structural basis of the pericellular matrix. Hyaluronan is extruded directly through the plasma membrane by one of three hyaluronan synthases and anchored to the cell surface by the synthase or cell surface receptors such as CD44 or RHAMM. Aggregating proteoglycans and other hyaluronan-binding proteins, contribute to the material and biological properties of the matrix and regulate cell and tissue function.
View Article and Find Full Text PDFHyaluronan is a glycosaminoglycan present in the extracellular matrix. When hyaluronan is degraded during infection and injury, low m.w.
View Article and Find Full Text PDF