Publications by authors named "Stephen E Nauyoks"

Nanostructured optical materials, for example, metamaterials, have unique spectral, directional, and polarimetric properties. Samples designed and fabricated for infrared (IR) wavelengths have been characterized using broadband instruments to measure specular polarimetric transmittance or reflectance as in ellipsometry or integrated hemisphere transmittance or reflectance. We have developed a wavelength-tunable IR Mueller-matrix (Mm) polarimetric scatterometer which uses tunable external-cavity quantum-cascade lasers (EC-QCLs) to tune onto and off of the narrowband spectral resonances of nanostructured optical materials and performed full polarimeteric and directional evaluation to more fully characterize their behavior.

View Article and Find Full Text PDF

A popular class of BRDF models is the microfacet models, where geometric optics is assumed. In contrast, more complex physical optics models may more accurately predict the BRDF, but the calculation is more resource intensive. These seemingly disparate approaches are compared in detail for the rough and smooth surface approximations of the modified Beckmann-Kirchhoff BRDF model, assuming Gaussian surface statistics.

View Article and Find Full Text PDF

Since a measurement of the bidirectional scatter distribution function (BSDF) of a material is proportional to the intensity of the scattered light, a BSDF measurement system with the addition of a dual rotating retarder polarimeter can be used to calculate the Mueller matrix of a scatterer. One advantage of a BSDF system using a laser source is its large dynamic range, which allows the measurement of scattered light both near to and away from the specular region. As BSDF measurements move away from the specular region and into a more diffuse-scatter region, the measured signal decreases and may approach the system's measurement floor.

View Article and Find Full Text PDF

Of the many classes of bidirectional reflectance distribution function (BRDF) models, two popular classes of models are the microfacet model and the linear systems diffraction model. The microfacet model has the benefit of speed and simplicity, as it uses geometric optics approximations, while linear systems theory uses a diffraction approach to compute the BRDF, at the expense of greater computational complexity. In this Letter, nongrazing BRDF measurements of rough and polished surface-reflecting materials at multiple incident angles are scaled by the microfacet cross section conversion term, but in the linear systems direction cosine space, resulting in great alignment of BRDF data at various incident angles in this space.

View Article and Find Full Text PDF