Publications by authors named "Stephen E Abechi"

Previous studies have shown that 2-arylbenzimidazole derivatives have a strong anti-diabetic effect. To further explore this potential, we develop new analogues of the compound using ligand-based drug design and tested their inhibitory and binding properties through QSAR analyses, molecular docking, dynamic simulations and pharmacokinetic studies. By using quantitative structure activity relationship and ligand-based modification, a highly precise predictive model and design of potent compounds was developed from the derivatives of 2-arylbenzimidazoles.

View Article and Find Full Text PDF

Identification of estrogen receptor (ER) agonists among environmental toxicants is essential for assessing the potential impact of toxicants on human health. Using 2D autocorrelation descriptors as predictor variables, two binary logistic regression models were developed to identify active ER agonists among hydroxylated polychlorinated biphenyls (OH-PCBs). The classifications made by the two models on the training set compounds resulted in accuracy, sensitivity and specificity of 95.

View Article and Find Full Text PDF

Objectives: Diabetes places a substantial economic burden on countries worldwide. The costs associated with diabetes management, including healthcare services, medications, monitoring equipment, and productivity losses, are substantial. The International Diabetes Federation has estimated that global healthcare expenditures associated with diabetes and its complications exceed hundreds of billions of dollars annually.

View Article and Find Full Text PDF

The quest for a sound treatment on the vulnerable population suffering and dying as a result of the blood flukes, S. mansoni is on the increase because both Praziquantel and Oxamniquine widely used for the treatment of Schistosomiasis for over 51 years suffer resistance and recurrence. Here-in, chemo-informatics techniques such as QSAR modeling, pharmacokinetic, docking alongside MD simulation were harnessed in designing novel 7-keto- sempevirolsempevirol derivatives that are more competent against S.

View Article and Find Full Text PDF

Objectives: The ongoing fight against endemic diseases is necessary due to the growing resistance of malarial parasites to widely accessible medications. Thus, there has been an ongoing search for antimalarial medications with improved efficacy. The goal of this study was to develop derivatives of benzoheterocyclic 4-aminoquinolines with enhanced activities and better binding affinities than the original compounds.

View Article and Find Full Text PDF

Disruption of the endocrine system by hydroxylated polychlorinated biphenyls (OH-PCBs) is hypothesized, among other potential mechanisms, to be mediated via nuclear receptor binding. Due to the high cost and lengthy time required to produce high-quality experimental data, empirical data to support the nuclear receptor binding hypothesis are in short supply. In the present study, two quantitative structure-activity relationship models were developed for predicting the estrogenic activities of OH-PCBs.

View Article and Find Full Text PDF

Background: The processes of drug development and validation are too expensive to be subjected to experimental trial and errors. Hence, the use of the insilico approach becomes imperative. To this effect, the drug-likeness and pharmacokinetic properties of the ten (10) previously designed derivatives of 2-anilino 4-amino substituted quinazolines were carried out.

View Article and Find Full Text PDF

The resistance of the P. falciparum strain to some of the antimalarial drugs has been a dominant dilemma facing the treatment of this fetid disease. This necessitates the detection and development of new antimalarial agents targeting the P.

View Article and Find Full Text PDF

Polychlorinated dibenzofurans (PCDFs) are known to cause endocrine disruption in humans and wildlife but the mechanisms underlying this disruption have not been adequately investigated. In this paper, the susceptibility of the endocrine system to disruption by PCDF congeners via nuclear receptor binding was studied using molecular docking simulation. Findings revealed that some PCDF congeners exhibit high probabilities of binding to androgen receptor in its agonistic and antagonistic conformations.

View Article and Find Full Text PDF

Production of polychlorinated biphenyls (PCBs) was banned a long time ago because of their harmful health effects but humans continue to be exposed to residual PCBs in the environment. In this study, the susceptibility of human nuclear receptors to binding by PCBs was investigated using molecular docking simulation. Findings revealed that PCBs belonging to ortho-substituted, mono-ortho-substituted and non-ortho-substituted congeners could bind to agonistic conformations of androgen (AR), estrogen (ER α and ER β), glucocorticoid (GR) and thyroid hormone (TR α and TR β) receptors as well as antagonistic conformation of androgen receptor (AR an) but only ortho-substituted and mono-ortho-substituted PCBs could bind to estrogen receptors in their antagonistic conformations (ER α an and ER β an).

View Article and Find Full Text PDF

Resistance nature of () to the most effective antimalarial drug, Artemisinin, intimidate the global goal of total eradication of malarial. In an attempt to overcome this challenge, the research was aimed at designing derivatives of β-amino alcohol grafted 1,4,5-trisubstituted 1,2,3-triazoles with improve activity against the through structural modifications of the most active compound (design template), and their activity determined using the developed theoretical predictive model. To achieve this, the geometries were optimized via density functional theory (DFT) using B3LYP/6-31G basis set to generate molecular descriptors for model development.

View Article and Find Full Text PDF

Polychlorinated dibenzo-p-dioxins (PCDDs) are hypothesized to exert their toxic effects in wildlife and humans via endocrine disruption. However, very scanty information is available on the underlying molecular interactions that trigger this disruption. In this study, molecular docking simulation was used to predict the susceptibility of 12 nuclear receptors to disruption via PCDD bindings.

View Article and Find Full Text PDF

The thermodynamics of free radical scavenge of 1,3,4-oxadiazole derivatives towards oxygen-centred free radicals were investigated by the density functional theory (DFT) method in the gas phase and aqueous solution. Three mechanisms of free radical scavenge namely, hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) were considered. The antioxidant descriptors that characterize these mechanisms such as, bond dissociation enthalpy (BDE), adiabatic ionization potential (AIP), proton dissociation enthalpy (PDE), proton affinity (PA) and electron transfer enthalpy (ETE) were evaluated.

View Article and Find Full Text PDF

The prevalence of degenerative diseases in recent time has triggered extensive research on their control. This condition could be prevented if the body has an efficient antioxidant mechanism to scavenge the free radicals which are their main causes. Curcumin and its derivatives are widely employed as antioxidants.

View Article and Find Full Text PDF

In search of new ways to improve catalyst design, the current research focused on using quantum mechanical descriptors to investigate the effect of proline as a catalyst for mechanism and rate of asymmetric aldol reaction. A plausible mechanism of reaction between acetone and 4-nitrobenzaldehyde in acetone medium was developed using highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies calculated via density functional theory (DFT) at the 6-31G∗/B3LYP level of theory. New mechanistic steps were proposed and found to follow, with expansion, the previously reported iminium-enamine route of typical class 1 aldolase enzymes.

View Article and Find Full Text PDF