In most eukaryotic organisms, translation elongation requires two highly conserved elongation factors eEF1A and eEF2. Fungal systems are unique in requiring a third factor, the eukaryotic Elongation Factor 3 (eEF3). For decades, eEF3, a ribosome-dependent ATPase, was considered "fungal-specific", however, recent bioinformatics analysis indicates it may be more widely distributed among other unicellular eukaryotes.
View Article and Find Full Text PDFBackground: DNA damage checkpoints insure that the integrity of genomic DNA is faithfully maintained throughout the eukaryotic cell cycle. In the presence of damaged DNA, checkpoints are triggered to delay cell cycle progression to allow for DNA repair. In fission yeast, the kinases Chk1 and Cds1 are major components of these DNA damage checkpoint pathways.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) is highly susceptible to oxidative and chemically induced damage, and these insults lead to a number of diseases. In Saccharomyces cerevisiae, the DNA helicase Pif1p is localized to the nucleus and mitochondria. We show that pif1 mutant cells are sensitive to ethidium bromide-induced damage and this mtDNA is prone to fragmentation.
View Article and Find Full Text PDFThe Saccharomyces cerevisiae DNA helicase Rrm3p is needed for normal fork progression through >1000 discrete sites scattered throughout the genome. Here we show that replication of all yeast chromosomes was markedly delayed in rrm3 cells. Delayed replication was seen even in a region that lacks any predicted Rrm3p-dependent sites.
View Article and Find Full Text PDFThe protein kinase Chk1 is required for proper arrest of the cell cycle in response to DNA damage. We have previously shown in Schizosaccharomyces pombe, that upon DNA damage, phosphorylation of Chk1 correlates with checkpoint activation and that phosphorylated Chk1 is capable of interacting with the 14-3-3 proteins, Rad24 and Rad25. The interaction between Rad24 and Chk1 is stimulated tenfold after exposure to DNA damaging agents and we postulate that it is an important event in the DNA damage checkpoint response pathway in fission yeast.
View Article and Find Full Text PDFCell cycle checkpoints exist to ensure the proper maintenance and stable inheritance of genomic information. The pathways that insure the faithful execution of these checkpoints are well conserved throughout evolution. In the fission yeast, Schizosaccharomyces pombe, a major cell cycle checkpoint exists that responds to the presence of damaged DNA and prevents this damage from being propagated to future generations.
View Article and Find Full Text PDFTreatment of cells with the anti-cancer drug camptothecin (CPT) induces topoisomerase I (Top1)-mediated DNA damage, which in turn affects cell proliferation and survival. In this report, we demonstrate that treatment of the wild-type HCT116 (wt HCT116) human colon cancer cell line and the isogenic p53(-/-) HCT116 and p21(-/-) HCT116 cell lines with a high concentration (250 nm) of CPT resulted in apoptosis, indicating that apoptosis occurred by a p53- and p21-independent mechanism. In contrast, treatment with a low concentration (20 nm) of CPT induced cell cycle arrest and senescence of the wt HCT116 cells, but apoptosis of the p53(-/-) HCT116 and p21(-/-) HCT116 cells.
View Article and Find Full Text PDF