By engulfing potentially harmful microbes, professional phagocytes are continually at risk from intracellular pathogens. To avoid becoming infected, the host must kill pathogens in the phagosome before they can escape or establish a survival niche. Here, we analyse the role of the phosphoinositide (PI) 5-kinase PIKfyve in phagosome maturation and killing, using the amoeba and model phagocyte Dictyostelium discoideum.
View Article and Find Full Text PDFNeodymium-iron-boron (NdFeB) magnets offer the strongest magnetic field per unit volume, and thus, are widely used in clean energy applications such as electric vehicle motors. However, rare earth elements (REEs), which are the key materials for creating NdFeB magnets, have been subject to significant supply uncertainty in the past decade. NdFeB magnet-to-magnet recycling has recently emerged as a promising strategy to mitigate this supply risk.
View Article and Find Full Text PDFOral Surg Oral Med Oral Pathol Oral Radiol
December 2013
Objective: The aim of this study was to compare imaging properties of 20 intraoral digital systems objectively.
Study Design: Using a direct current x-ray source and a radiographic phantom, a series of radiographs was made from the lowest exposure time until the sensor saturated. Images were captured and stored.
Digital intraoral radiographic systems have been rapidly replacing conventional dental X-ray films for diagnosis of dental diseases. Current scientific literature supports the use of these digital systems for the detection of dental caries, periodontal bone loss, and periapical pathologies. However, relatively few studies have been published addressing the detection of dental root fractures.
View Article and Find Full Text PDFAn online forensic dental identification exercise was conducted involving 24 antemortem-postmortem (AM-PM) dental radiograph pairs from actual forensic identification cases. Images had been digitally cropped to remove coronal tooth structure and dental restorations. Volunteer forensic odontologists were passively recruited to compare the AM-PM dental radiographs online and conclude identification status using the guidelines for identification from the American Board of Forensic Odontology.
View Article and Find Full Text PDFPtdIns(3,5)P(2) is one of the seven regulatory PPIn (polyphosphoinositides) that are ubiquitous in eukaryotes. It controls membrane trafficking at multiple points in the endosomal/lysosomal system and consequently regulates the size, shape and acidity of at least one endo-lysosomal compartment. PtdIns(3,5)P(2) appears to exert this control via multiple effector proteins, with each effector specific for a subset of the various PtdIns(3,5)P(2)-dependent processes.
View Article and Find Full Text PDFPhosphoinositides (PIs) play a major role in eukaryotic cells, despite being a minor component of most membranes. This is the first report on PI metabolism in a bryophyte, the moss Physcomitrella patens. Moss PI composition is similar to that of other land plants growing under normal conditions.
View Article and Find Full Text PDFInositol phospholipids regulate many cellular processes, including cell survival, membrane trafficking, and actin polymerization. Quantification of inositol lipids is one of the essential techniques needed for studies that aim to decipher inositol lipid-dependent cellular functions. The study of phosphoinositides in most organisms is hampered by a lack of facile genetic tools.
View Article and Find Full Text PDFPhosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) is needed for retrograde membrane trafficking from lysosomal and late endosomal compartments and its synthesis is tightly regulated. But how cells regulate PtdIns(3,5)P2 synthesis--for example, in response to hyperosmotic shock--remains unexplained. A paper from the Weisman group gives the most complete picture so far of a multiprotein complex that controls PtdIns(3,5)P2 synthesis and explains how a VAC14 mutation functionally impairs the scaffold protein at the heart of the complex and causes a neurodegenerative condition in mice.
View Article and Find Full Text PDFBiochem Soc Symp
July 2007
PtdIns(3,5)P2 was discovered about a decade ago and much of the machinery that makes, degrades and senses it has been uncovered. Despite this, we still lack a complete understanding of how the pieces fit together but some patterns are beginning to emerge. Molecular functions for PtdIns(3,5)P2 are also elusive, but the identification of effectors offers a way into some of these processes.
View Article and Find Full Text PDFThe trafficking of endocytosed receptors through phosphatidylinositol 3-phosphate [PtdIns(3)P]-containing endosomes is thought to attenuate their signaling. Here, we show that the PtdIns(3)P 5-kinase Fab1/PIKfyve controls trafficking but not silencing of endocytosed receptors. Drosophila fab1 mutants contain undetectable phosphatidylinositol 3,5-bisphosphate levels, show profound increases in cell and organ size, and die at the pupal stage.
View Article and Find Full Text PDFThe inositol lipid phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2] is involved in a myriad of cellular processes, including the regulation of exocytosis and endocytosis. In this paper, we address the role of PtdIns(4,5)P2 in compound exocytosis from rat peritoneal mast cells. This process involves granule-plasma membrane fusion as well as homotypic granule membrane fusion and occurs without any immediate compensatory endocytosis.
View Article and Find Full Text PDFIt is now apparent that each of the known, naturally occurring polyphosphoinositides, the phosphatidylinositol monophosphates (PtdIns3P, PtdIns4P, PtdIns5P), phosphatidylinositol bisphosphates [PtdIns(3,4)P(2), PtdIns(3,5)P(2), PtdIns(4,5)P(2)], and phosphatidylinositol trisphosphate [PtdIns(3,4,5)P(3)], have distinct roles in regulating many cellular events, including intracellular signaling, migration, and vesicular trafficking. Traditional identification techniques require [(32)P]inorganic phosphate or [(3)H]inositol radiolabeling, acidified lipid extraction, deacylation, and ion-exchange head group separation, which are time-consuming and not suitable for samples in which radiolabeling is impractical, thus greatly restricting the study of these lipids in many physiologically relevant systems. Thus, we have developed a novel, high-efficiency, buffered citrate extraction methodology to minimize acid-induced phosphoinositide degradation, together with a high-sensitivity liquid chromatography-mass spectrometry (LC-MS) protocol using an acetonitrile-chloroform-methanol-water-ethylamine gradient with a microbore silica column that enables the identification and quantification of all phosphoinositides in a sample.
View Article and Find Full Text PDFTrends Biochem Sci
January 2006
Polyphosphoinositides (PPIn) are low-abundance membrane phospholipids that each bind to a distinctive set of effector proteins and, thereby, regulate a characteristic suite of cellular processes. Major functions of phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P(2)] are in membrane and protein trafficking, and in pH control in the endosome-lysosome axis. Recently identified PtdIns(3,5)P(2) effectors include a family of novel beta-propeller proteins, for which we propose the name PROPPINs [for beta-propeller(s) that binds PPIn], and possibly proteins of the epsin and CHMP (charged multi-vesicular body proteins) families.
View Article and Find Full Text PDFPLD (phospholipase D) activity catalyses the generation of the lipid messenger phosphatidic acid, which has been implicated in a number of cellular processes, particularly the regulation of membrane traffic. In the present study, we report that disruption of PLD signalling causes unexpectedly profound effects on the actin-based motility of Dictyostelium. Cells in which PLD activity is inhibited by butan-1-ol show a complete loss of actin-based structures, accompanied by relocalization of F-actin into small clusters, and eventually the nucleus, without a visible fall in levels of F-actin.
View Article and Find Full Text PDFPhosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), made by Fab1p, is essential for vesicle recycling from vacuole/lysosomal compartments and for protein sorting into multivesicular bodies. To isolate PtdIns(3,5)P2 effectors, we identified Saccharomyces cerevisiae mutants that display fab1delta-like vacuole enlargement, one of which lacked the SVP1/YFR021w/ATG18 gene. Expressed Svp1p displays PtdIns(3,5)P2 binding of exquisite specificity, GFP-Svp1p localises to the vacuole membrane in a Fab1p-dependent manner, and svp1delta cells fail to recycle a marker protein from the vacuole to the Golgi.
View Article and Find Full Text PDFIn this article, we consider the functions of the myotubularins - a large family of phosphoinositide 3-phosphatases. By analogy with the phosphatidylinositol 3-phosphatase PTEN (phosphatase and tensin homolog deleted in chromosome ten) and many protein phosphatases, it has been proposed that the primary function of this protein family is to regulate substrate levels, in this case phosphatidylinositol (3)-phosphate. We propose an alternate, or additional, function that is analogous to the G-protein family of phosphatases, which use nucleotide-dependent conformational changes to transduce signals or do mechanical work.
View Article and Find Full Text PDFWIPI49 is a member of a previously undescribed family of WD40-repeat proteins that we demonstrate binds 3-phosphorylated phosphoinositides. Immunofluorescent imaging indicates that WIPI49 is localized to both trans-Golgi and endosomal membranes, organelles between which it traffics in a microtubule-dependent manner. Live cell imaging establishes that WIPI49 traffics through the same set of endosomal membranes as that followed by the mannose-6-phosphate receptor (MPR), and consistent with this, WIPI49 is enriched in clathrin-coated vesicles.
View Article and Find Full Text PDFPolyphosphoinositide-specific phospholipases (PICs) of the delta-subfamily are ubiquitous in eukaryotes, but an inability to control these enzymes physiologically has been a major obstacle to understanding their cellular function(s). Plc1p is similar to metazoan delta-PICs and is the only PIC in Saccharomyces cerevisiae. Genetic studies have implicated Plc1p in several cell functions, both nuclear and cytoplasmic.
View Article and Find Full Text PDFPhosphoinositides control many different processes required for normal cellular function. Myotubularins are a family of Phosphatidylinositol 3-phosphate (PtdIns3P) phosphatases identified by the positional cloning of the MTM1 gene in patients suffering from X-linked myotubular myopathy and the MTMR2 gene in patients suffering from the demyelinating neuropathy Charcot-Marie-Tooth disease type 4B. MTM1 is a phosphatidylinositol phosphatase with reported specificity toward PtdIns3P, while the related proteins MTMR2 and MTMR3 hydrolyze both PtdIns3P and PtdIns(3,5)P2.
View Article and Find Full Text PDFAnti-neutrophil cytoplasm autoantibodies (ANCA) are implicated in the pathogenesis of systemic vasculitis. Intact ANCA IgG activate superoxide generation in cytokine-primed neutrophils after binding their antigens and co-engaging Fcgamma receptors (FcgammaR). The contribution of antigen binding via ANCA F(ab')(2) fragments to signaling has been unclear.
View Article and Find Full Text PDFBackground: The PtdIns3P 5-kinase Fab1 makes PtdIns(3,5)P(2), a phosphoinositide essential for retrograde trafficking between the vacuole/lysosome and the late endosome and also for trafficking of some proteins into the vacuole via multivesicular bodies (MVB). No regulators of Fab1 were identified until recently.
Results: Visual screening of the Eurofan II panel of S.