Taste information is encoded in the gustatory nervous system much as in other sensory systems, with notable exceptions. The concept of adequate stimulus is common to all sensory modalities, from somatosensory to auditory, visual, and so forth. That is, sensory cells normally respond only to one particular form of stimulation, the adequate stimulus, such as photons (photoreceptors in the visual system), odors (olfactory sensory neurons in the olfactory system), noxious heat (nociceptors in the somatosensory system), etc.
View Article and Find Full Text PDFIn mammalian taste buds, Type I cells comprise half of all cells. These are termed "glial-like" based on morphologic and molecular features, but there are limited studies describing their function. We tested whether Type I cells sense chemosensory activation of adjacent chemosensory (i.
View Article and Find Full Text PDFChemical synapses between taste cells were first proposed based on electron microscopy of fish taste buds. Subsequently, researchers found considerable evidence for electrical coupling in fish, amphibian, and possibly mammalian taste buds. The development lingual slice and isolated cell preparations allowed detailed investigations of cell-cell interactions, both chemical and electrical, in taste buds.
View Article and Find Full Text PDFHow taste buds detect NaCl remains poorly understood. Among other problems, applying taste-relevant concentrations of NaCl (50-500 mm) onto isolated taste buds or cells exposes them to unphysiological (hypo/hypertonic) conditions. To overcome these limitations, we used the anterior tongue of male and female mice to implement a slice preparation in which fungiform taste buds are in a relatively intact tissue environment and stimuli are limited to the taste pore.
View Article and Find Full Text PDFThe gustatory system encodes information about chemical identity, nutritional value, and concentration of sensory stimuli before transmitting the signal from taste buds to central neurons that process and transform the signal. Deciphering the coding logic for taste quality requires examining responses at each level along the neural axis-from peripheral sensory organs to gustatory cortex. From the earliest single-fiber recordings, it was clear that some afferent neurons respond uniquely and others to stimuli of multiple qualities.
View Article and Find Full Text PDFKey Points: Orosensory thermal trigeminal afferent neurons respond to cool, warm, and nociceptive hot temperatures with the majority activated in the cool range. Many of these thermosensitive trigeminal orosensory afferent neurons also respond to capsaicin, menthol, and/or mustard oil (allyl isothiocyanate) at concentrations found in foods and spices. There is significant but incomplete overlap between afferent trigeminal neurons that respond to oral thermal stimulation and to the above chemesthetic compounds.
View Article and Find Full Text PDFTaste buds are innervated by neurons whose cell bodies reside in cranial sensory ganglia. Studies on the functional properties and connectivity of these neurons are hindered by the lack of markers to define their molecular identities and classes. The mouse geniculate ganglion contains chemosensory neurons innervating lingual and palatal taste buds and somatosensory neurons innervating the pinna.
View Article and Find Full Text PDFThe past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding.
View Article and Find Full Text PDFGustatory stimuli are detected by taste buds and transmitted to the hindbrain via sensory afferent neurons. Whether each taste quality (sweet, bitter and so on) is encoded by separate neurons ('labelled lines') remains controversial. We used mice expressing GCaMP3 in geniculate ganglion sensory neurons to investigate taste-evoked activity.
View Article and Find Full Text PDFSolutions of table salt (NaCl) elicit several tastes, including of course saltiness but also sweet, sour, and bitter. This brief review touches on some of the mileposts concerning what is known about taste transduction for the Na(+) ion, the main contributor to saltiness. Electrophysiological recordings, initially from single gustatory nerve fibers, and later, integrated impulse activity from gustatory nerves led researchers to predict that Na(+) ions interacted with a surface molecule.
View Article and Find Full Text PDFLeptin, a peptide hormone released by adipose tissue, acts on the hypothalamus to control cravings and appetite. Leptin also acts to decrease taste responses to sweet substances, though there is little detailed information regarding where leptin acts in the taste transduction cascade. The present study examined the effects of leptin on sweet-evoked responses and neuro transmitter release from isolated taste buds.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2015
Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds.
View Article and Find Full Text PDFTRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway.
View Article and Find Full Text PDFTaste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50-100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds - Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells.
View Article and Find Full Text PDFAcetylcholine (ACh), a candidate neurotransmitter that has been implicated in taste buds, elicits calcium mobilization in Receptor (Type II) taste cells. Using RT-PCR analysis and pharmacological interventions, we demonstrate that the muscarinic acetylcholine receptor M3 mediates these actions. Applying ACh enhanced both taste-evoked Ca2+ responses and taste-evoked afferent neurotransmitter (ATP) secretion from taste Receptor cells.
View Article and Find Full Text PDFNeurons, sensory cells and endocrine cells secrete neurotransmitters and hormones to communicate with other cells and to coordinate organ and system function. Validation that a substance is used as an extracellular signaling molecule by a given cell requires a direct demonstration of its secretion. In this protocol we describe the use of biosensor cells to detect neurotransmitter release from endocrine cells in real-time.
View Article and Find Full Text PDFMammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells.
View Article and Find Full Text PDFSeveral transmitter candidates including serotonin (5-HT), ATP, and norepinephrine (NE) have been identified in taste buds. Recently, γ-aminobutyric acid (GABA) as well as the associated synthetic enzymes and receptors have also been identified in taste cells. GABA reduces taste-evoked ATP secretion from Receptor cells and is considered to be an inhibitory transmitter in taste buds.
View Article and Find Full Text PDFIn response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors [P2X2 and P2X3 double knock-out (DKO) mice]. The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal.
View Article and Find Full Text PDFAcetylcholine is a neurotransmitter that has a major role in the function of the insulin-secreting pancreatic beta cell. Parasympathetic innervation of the endocrine pancreas, the islets of Langerhans, has been shown to provide cholinergic input to the beta cell in several species, but the role of autonomic innervation in human beta cell function is at present unclear. Here we show that, in contrast to the case in mouse islets, cholinergic innervation of human islets is sparse.
View Article and Find Full Text PDFTaste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits β2, δ, and π, as well as GABA(B) receptors.
View Article and Find Full Text PDFBackground: The neuropeptide, oxytocin (OXT), acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout) overconsume salty and sweet (i.e.
View Article and Find Full Text PDF