Publications by authors named "Stephen D Davis"

Southern California experienced unprecedented megadrought between 2012 and 2018. During this time, Malosma laurina, a chaparral species normally resilient to single-year intense drought, developed extensive mortality exceeding 60% throughout low-elevation coastal populations of the Santa Monica Mountains. We assessed the physiological mechanisms by which the advent of megadrought predisposed M.

View Article and Find Full Text PDF

Plants can detect herbivore-induced plant volatiles (HIPVs) from their damaged neighbours and respond by enhancing or priming their defenses against future herbivore attack. Plant communication and defense priming by volatile cues has been well documented, however, the extent to which plants are able to perceive and respond to these cues across different environmental contexts remains poorly understood. We investigated how abiotic changes that modulate stomatal conductance and/or defense signalling affect the ability of maize plants to perceive HIPVs and respond by priming their defenses.

View Article and Find Full Text PDF

Purpose: This article describes our experience in implementation of superficial radiation therapy (SRT) using SRT-100 Vision™ for non-melanoma skin cancer.

Methods: Following the American Association of Physicists in Medicine Task Group-61 protocol, absolute output (absorbed dose to water at surface (cGy/min)) was measured for three energies (50, 70, and 100 kV) and for six applicators (1.5-5.

View Article and Find Full Text PDF

The persistence of college students in STEM majors after their first-year of college is approximately 50%, with underrepresented populations displaying even higher rates of departure. For many undergraduates, their first-year in college is defined by large class sizes, poor access to research faculty, and minimal standing in communities of scholars. Pepperdine University and Whittier College, funded by a National Science Foundation award to Improve Undergraduate Stem Education (NSF IUSE), partnered in the development of first-year classes specifically geared to improve student persistence in STEM and academic success.

View Article and Find Full Text PDF

The purpose of this report is to provide detailed guidance on the dosimetry of the INTRABEAM® (Carl Zeiss Medical AG, Jena, Germany) electronic brachytherapy (eBT) system as it stands at the present time. This report has been developed by the members of American Association of Physicists in Medicine (AAPM) Task Group 292 and endorsed by the AAPM. Members of AAPM Task Group 292 on Electronic-Brachytherapy Dosimetry have reviewed pertinent publications and user manuals regarding the INTRABEAM system dosimetry and manufacturer-supplied dose calculation protocols.

View Article and Find Full Text PDF

Desiccation-tolerant (DT) organisms can lose nearly all their water without dying. Desiccation tolerance allows organisms to survive in a nearly completely dehydrated, dormant state. At the cellular level, sugars and proteins stabilize cellular components and protect them from oxidative damage.

View Article and Find Full Text PDF

Desiccation-tolerant (DT) plants can dry past -100 MPa and subsequently recover function upon rehydration. Vascular DT plants face the unique challenges of desiccating and rehydrating complex tissues without causing structural damage. However, these dynamics have not been studied in intact DT plants.

View Article and Find Full Text PDF

Given increasing water deficits across numerous ecosystems world-wide, it is urgent to understand the sequence of failure of leaf function during dehydration. We assessed dehydration-induced losses of rehydration capacity and maximum quantum yield of the photosystem II (F /F ) in the leaves of 10 diverse angiosperm species, and tested when these occurred relative to turgor loss, declines of stomatal conductance g , and hydraulic conductance K , including xylem and outside xylem pathways for the same study plants. We resolved the sequences of relative water content and leaf water potential Ψ thresholds of functional impairment.

View Article and Find Full Text PDF

Premise Of The Study: California experienced severe drought between 2012 and 2016. During this period, we compared seasonal changes in tissue-water relations among eight fern species in the Santa Monica Mountains of southern California to elucidate differential mechanisms of drought survival and physiological performance during extreme water deficits.

Methods: We monitored seasonal changes in water potential (Ψmd) and dark-adapted chlorophyll fluorescence (Fv/Fm), assessed tissue-water relations including osmotic potential at saturation and the turgor loss point (Ψπ, sat and Ψπ, tlp), and measured, for two evergreen species, xylem-specific and leaf-specific hydraulic conductivity (Ks and Kl) and vulnerability of stem xylem to water stress-induced embolism (water potential at 50% loss hydraulic conductivity, Ψ50).

View Article and Find Full Text PDF

Chaparral is the most abundant vegetation type in California and current climate change models predict more frequent and severe droughts that could impact plant community structure. Understanding the factors related to species-specific drought mortality is essential to predict such changes. We predicted that life history type, hydraulic traits, and plant size would be related to the ability of species to survive drought.

View Article and Find Full Text PDF

Water plays a central role in plant biology and the efficiency of water transport throughout the plant affects both photosynthetic rate and growth, an influence that scales up deterministically to the productivity of terrestrial ecosystems. Moreover, hydraulic traits mediate the ways in which plants interact with their abiotic and biotic environment. At landscape to global scale, plant hydraulic traits are important in describing the function of ecological communities and ecosystems.

View Article and Find Full Text PDF

Understanding and predicting plant response to disturbance is of paramount importance in our changing world. Resprouting ability is often considered a simple qualitative trait and used in many ecological studies. Our aim is to show some of the complexities of resprouting while highlighting cautions that need be taken in using resprouting ability to predict vegetation responses across disturbance types and biomes.

View Article and Find Full Text PDF

While commissioning Varian's Portal Dose Image Prediction (PDIP) algorithm for portal dosimetry, an asymmetric radial response in the portal imager due to backscatter from the support arm was observed. This asymmetric response led to differences on the order of 2%-3% for simple square fields (< 20 × 20 cm2) when comparing the measured to predicted portal fluences. A separate problem was that discrepancies of up to 10% were seen in measured to predicted portal fluences at increasing off-axis distance (> 10 cm).

View Article and Find Full Text PDF

Image-guided radiation therapy using cone-beam computed tomography (CBCT) is becoming routine practice in modern radiation therapy. The purpose of this work was to develop an imaging QA program for CT and CBCT units in our department, based on the American College of Radiology (ACR) CT accreditation phantom. The phantom has four testing modules, permitting one to test CT number accuracy, slice width, low contrast resolution, image uniformity, in-plane distance accuracy, and high-contrast resolution reproducibly with suggested window/levels for image analysis.

View Article and Find Full Text PDF

Purpose: To describe our experience with a novel technique for total skin irradiation using helical TomoTherapy (Accuray, Sunnyvale, CA).

Methods And Materials: An infant with refractory acute myelogenous leukemia with extensive cutaneous involvement was given total skin irradiation using inverse-planned helical tomotherapy. Quality assurance tests to determine the deliverability of the technique and the accuracy of dose estimation at the superficial skin level were devised and performed.

View Article and Find Full Text PDF

Purpose: To measure the 2D dose distributions with submillimeter resolution for (131)Cs (model CS-1 Rev2) and (125)I (model 6711) seeds in a Solid Water phantom using radiochromic EBT film for radial distances from 0.06cm to 5cm. To determine the TG-43 dosimetry parameters in water by applying Solid Water to liquid water correction factors generated from Monte Carlo simulations.

View Article and Find Full Text PDF

We examined postfire regeneration of chaparral shrubs during an intense drought. This study focused on the demography and physiology of shrub species that resprout from a basal lignotuber following fire. We found significant levels of resprout mortality when intense drought occurred in the year following fire during the period of shrub recovery.

View Article and Find Full Text PDF

Remote afterloading devices used for high-dose-rate (HDR) brachytherapy may be supplied with different sources, and these sources typically have differing initial source strengths. In addition, the proposed frequency for source changes may also vary, depending upon the source type. Dosimetric parameters unique to each source are often used to compare source types.

View Article and Find Full Text PDF

Premise Of The Study: Microsatellite (simple sequence repeat [SSR]) markers were developed for Ceanothus megacarpus, a chaparral species endemic to coastal southern California, to investigate potential processes (e.g., fragmentation, genetic drift, and interspecific hybridization) responsible for the genetic structure within and among populations distributed throughout mainland and island populations.

View Article and Find Full Text PDF

The charge of Task Group 186 (TG-186) is to provide guidance for early adopters of model-based dose calculation algorithms (MBDCAs) for brachytherapy (BT) dose calculations to ensure practice uniformity. Contrary to external beam radiotherapy, heterogeneity correction algorithms have only recently been made available to the BT community. Yet, BT dose calculation accuracy is highly dependent on scatter conditions and photoelectric effect cross-sections relative to water.

View Article and Find Full Text PDF

Premise Of The Study: California chaparral shrub species have different life history types: Nonsprouters (NS) are killed by fire and persist through a fire-stimulated seed bank; facultative sprouters (FS) reestablish by a combination of vegetative sprouting and seeding; and obligate sprouters (OS) reestablish exclusively by sprouting. Nonsprouters and FS establish seedlings in open-canopy postfire environments, whereas OS establish seedlings between fires in the shady understory. We hypothesized that allocation differences among seedlings of postfire sprouters and nonsprouters and regeneration niche differences would lead to contrasting patterns in biomass accumulation (NS > FS > OS, in sun; OS > FS > NS, in shade).

View Article and Find Full Text PDF

Purpose: Recent advances in the imaging of (90)Y using positron emission tomography (PET) and improved uncertainty in the branching ratio for the internal pair production component of (90)Y decay allow for a more accurate determination of the activity distribution of (90)Y microspheres within a patient. This improved activity distribution can be convolved with the dose kernel of (90)Y to calculate the dose distribution within a patient. This work investigates the effects of microsphere and surrounding material composition on (90)Y dose kernels using egsnrc and mcnp5 and compares the results of these two transport codes.

View Article and Find Full Text PDF

Purpose: To perform a comparison of the interim air-kerma strength standard for high dose rate (HDR) (192)Ir brachytherapy sources maintained by the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) with measurements of the various source models using modified techniques from the literature. The current interim standard was established by Goetsch et al. in 1991 and has remained unchanged to date.

View Article and Find Full Text PDF

Purpose: Intracavitary accelerated partial breast irradiation (APBI) has become a popular treatment for early stage breast cancer in recent years due to its shortened course of treatment and simplified treatment planning compared to traditional external beam breast conservation therapy. However, the exit dose to the skin is a major concern and can be a limiting factor for these treatments. Most treatment planning systems (TPSs) currently used for high dose-rate (HDR) 192Ir brachytherapy overestimate the exit skin dose because they assume a homogeneous water medium and do not account for finite patient dimensions.

View Article and Find Full Text PDF