Publications by authors named "Stephen D Bond"

Using random walk analyses we explore diffusive transport on networks obtained from contacts between isotropically compressed, monodisperse, frictionless sphere packings generated over a range of pressures in the vicinity of the jamming transition p→0. For conductive particles in an insulating medium, conduction is determined by the particle contact network with nodes representing particle centers and edges contacts between particles. The transition rate is not homogeneous, but is distributed inhomogeneously due to the randomness of packing and concomitant disorder of the contact network, e.

View Article and Find Full Text PDF

Generalized Langevin dynamics (GLD) arise in the modeling of a number of systems, ranging from structured fluids that exhibit a viscoelastic mechanical response, to biological systems, and other media that exhibit anomalous diffusive phenomena. Molecular dynamics (MD) simulations that include GLD in conjunction with external and/or pairwise forces require the development of numerical integrators that are efficient, stable, and have known convergence properties. In this article, we derive a family of extended variable integrators for the Generalized Langevin equation with a positive Prony series memory kernel.

View Article and Find Full Text PDF

The Poisson-Boltzmann equation is an important tool in modeling solvent in biomolecular systems. In this article, we focus on numerical approximations to the electrostatic potential expressed in the regularized linear Poisson-Boltzmann equation. We expose the flux directly through a first-order system form of the equation.

View Article and Find Full Text PDF

A computational framework is presented for the continuum modeling of cellular biomolecular diffusion influenced by electrostatic driving forces. This framework is developed from a combination of state-of-the-art numerical methods, geometric meshing, and computer visualization tools. In particular, a hybrid of (adaptive) finite element and boundary element methods is adopted to solve the Smoluchowski equation (SE), the Poisson equation (PE), and the Poisson-Nernst-Planck equation (PNPE) in order to describe electrodiffusion processes.

View Article and Find Full Text PDF

This article describes the numerical solution of the time-dependent Smoluchowski equation to study diffusion in biomolecular systems. Specifically, finite element methods have been developed to calculate ligand binding rate constants for large biomolecules. The resulting software has been validated and applied to the mouse acetylcholinesterase (mAChE) monomer and several tetramers.

View Article and Find Full Text PDF

The reaction-diffusion system of the neuromuscular junction has been modeled in 3D using the finite element package FEtk. The numerical solution of the dynamics of acetylcholine with the detailed reaction processes of acetylcholinesterases and nicotinic acetylcholine receptors has been discussed with the reaction-determined boundary conditions. The simulation results describe the detailed acetylcholine hydrolysis process, and reveal the time-dependent interconversion of the closed and open states of the acetylcholine receptors as well as the percentages of unliganded/monoliganded/diliganded states during the neuro-transmission.

View Article and Find Full Text PDF

A robust infrastructure for solving time-dependent diffusion using the finite element package FEtk has been developed to simulate synaptic transmission in a neuromuscular junction with realistic postsynaptic folds. Simplified rectilinear synapse models serve as benchmarks in initial numerical studies of how variations in geometry and kinetics relate to endplate currents associated with fast-twitch, slow-twitch, and dystrophic muscles. The flexibility and scalability of FEtk affords increasingly realistic and complex models that can be formed in concert with expanding experimental understanding from electron microscopy.

View Article and Find Full Text PDF